In an effort to contribute to the improvement of Matric Biology education, a survey was conducted in 1996 and 1997 of Matric pupils and first year students at several tertiary institutions, in order to identify those topics which learners found most difficult. Photosynthesis and respiration were among the topics with which Matric Biology learners experienced many conceptual difficulties. The aim of this project was twofold: firstly to identify specific misconceptions students had regarding these topics, and secondly, to develop and evaluate a learning tool that would address these misconceptions. In order to identify the most common specific misconceptions, a quantitative research approach was taken. A three-tiered multiple choice questionnaire was developed, and administered to first year students in the 1998 intakes at MLSultan Technikon and the Biology Department of the University of Natal, Durban. It was also administered to students at the end of their first, second and third years of Cell Biology (University of Natal), Analysis of the questionnaires revealed that students did not understand the complementary relationship between photosynthesis and respiration. Computer-based virtual worlds provide constructivist learning environments, in which visualisation and problem solving in a complex system is possible. It was proposed that use of a virtual world would be an effective means of addressing the misconceptions we identified. A game was developed that presented students with authentic tasks of filling an oxygen cylinder (as an air supply) and a carbon dioxide cylinder (which would later be used to extinguish a fire). In order to do this students were required to solve a series of three puzzles, all of which related to the processes of photosynthesis and respiration. To account for different learning styles, the puzzles were based on three of Gardner's multiple forms of intelligence. Evaluation of the virtual world made use of a combination of quantitative and qualitative research methods. Students' understanding of the processes was measured with the use of the questionnaire. A deeper evaluation of their understanding and affective response to the game was obtained through interviews. It was found that students who had played the game had a clearer understanding of the complementary relationship between photosynthesis and respiration, and understood that respiration in plant cells is a continuous process. Students also showed greater confidence in their grasp of the processes, and reported that playing the game had been an enjoyable way of complementing their traditional lecture material in order to master these concepts. The virtual world was an effective learning tool for addressing the misconceptions students held regarding photosynthesis and respiration. / Thesis (M.Sc.)-University of Natal, Durban, 1998.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ukzn/oai:http://researchspace.ukzn.ac.za:10413/3634 |
Date | January 1998 |
Creators | Adams, Jillian Claire. |
Contributors | Amory, Alan M., Criticos, C. |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds