[Truncated abstract] Mitochondria are semi-autonomous organelles found in almost all eukaryotic cells to contain more than 1000 different proteins. The majority of these proteins are encoded in the nucleus, translated in the cytosol and imported into mitochondria. The overall aim of this study was to characterise the regulation of nuclear-encoded mitochondrial proteins (NEMP). This was carried out in the plant, Arabidopsis thaliana, using the alternative oxidase (AOX) as a model. Specifically, the aims were to i) determine how regulation of NEMP interact with known regulatory pathways/mechanisms; ii) determine if the pattern of coexpression observed for NEMP are due to co-regulation, and iii) to determine whether mitochondrial retrograde regulatory pathways interact with known chloroplast regulatory pathways. AOX1c is one of five genes encoding AOX in Arabidopsis. It is expressed in a variety of organs and is not induced by stress. Thus, its regulation was characterised in order to gain insight into the regulation of NEMP under normal growth conditions. Analysis of the promoter of AOX1c revealed cis-acting regulatory elements (CAREs) common to both AOX1c from Arabidopsis and AOX2b from soybean. Additionally, Site II elements, previously shown to be involved in the regulation of the proliferating cell nuclear antigen, are present in the upstream promoter region of AtAOX1c and were shown to be strong negative regulators of AtAOX1c expression. AOX1a is a gene encoding AOX that is induced at a transcript level, by many stress treatments. BA signalling and provide evidence of at least one common factor between chloroplastic and mitochondrial retrograde regulatory pathways, i.e. ABI4. ... The above results reveal that the regulation of NEMP are integrated with the mainstream regulatory pathways that control gene expression for a variety of proteins in various locations. Although this is not unexpected, it does raise the question of how mitochondrial function impacts, or feeds back, to alter these pathways, i.e. how mitochondrial retrograde signals affects the regulation of genes encoding proteins in a variety of locations. The observed interaction of mitochondrial and plastid retrograde regulatory pathways at the level of ABI4, suggests that mitochondrial signals have the potential to act as a powerful regulators of many cellular functions. Although interaction between mitochondrial and other organelles at a cellular level has been known for some time, there is still much work left to be done to define the network of molecular interactions that exists to regulate and integrate the expression of NEMP with all other proteins in the cell. This study reveals that interactions also occur at regulatory steps that have to potential to regulate many function in organelles, even if no direct metabolic link exists. However, this study has only begun to uncover these interactions at a molecular level.
Identifer | oai:union.ndltd.org:ADTP/281366 |
Date | January 2009 |
Creators | Ho, Lois H. M. |
Publisher | University of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, ARC Centre of Excellence in Plant Energy Biology |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Lois H.M. Ho, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0265 seconds