Return to search

Design, Synthesis, and Application of Stimuli-Responsive Block Copolymers

This thesis reports the preparation of novel multi-responsive and multiply stimulable triblock copolymers. The resultant polymers were used to coat cotton fabrics and glass to render them amphiphobic. Further, a method was developed for the preparation of poly(ethylene glycol)-block-poly(hydroxyethyl methacrylate) (PEG-b-PHEMA) via anionic polymerization.
The multi-responsive copolymer refers to poly(ethylene glycol)-orthonitrobenzyl-poly[2-(perfluorooctyl)ethyl methacrylate)-block-poly(2-cinnamoloxyethyl methacrylate) (PEG-ONB-PFOEMA-b-PCEMA, or P1). P1 was synthesized via atom transfer radical polymerization (ATRP) of FOEMA and a precursory monomer of CEMA using a PEG macroinitiator. The copolymer was multi-responsive or dual light-responsive because the ONB junction cleaves and PCEMA block becomes crosslinked upon UV photolysis. The multiply stimulable copolymers are a series of poly(ethylene glycol)-disulfide-poly[2-(perfluorooctyl)ethyl methacrylate)-block-poly(2-cinnamoloxyethyl methacrylate) (PEG-S2-PFOEMA-b-PCEMA) copolymers. These polymers were synthesized by the end-coupling Py-S2-PFOEMA-b-PHEMA and PEG-SH, and subsequent cinnamation of the PHEMA block. These polymers are multiply stimulable because the S2 junction and PCEMA block respond to different stimulations, such as reducing agents and light, respectively. These synthetic strategies will advance the field of stimuli-responsive polymers by providing novel functional polymers for the generation of durable self-cleaning surfaces.
The above polymers form micelles in water or water/organic solvent mixtures because of the water-soluble PEG blocks. Polymer-coated cotton was obtained by immersing cotton in micellar copolymer solutions before subsequent drying and annealing treatment. Upon photolysis, the PEG block was cleaved and the PCEMA anchoring layer became crosslinked. Such a crosslinked and stable layer was rendered amphiphobic because of the exposed PFOEMA block. A similar coating can be obtained from P2. Two types of stimulations including photolysis and reduction treatment need to be applied to yield amphiphobic textiles. This coating strategy is unique and environmentally friendly because the water- and oil-repellent coatings were prepared from an aqueous solution for the first time.
In a further study, a novel and long-sought method was developed for the anionic polymerization of PEG-b-PHEMA. A PEG-DPE macroinitiator was synthesized and subsequently converted into an active initiator by reaction with sec-butyl lithium. Consequently, the active initiator underwent polymerization with HEMA-TMS to yield PEG-b-P(HEMA-TMS). Upon post-polymerization modification, PEG-b-PHEMA was obtained with a low polydispersity of 1.08. / Thesis (Ph.D, Chemistry) -- Queen's University, 2013-04-29 12:25:54.593

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/7983
Date29 April 2013
CreatorsRabnawaz, MUHAMMAD
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0021 seconds