Submitted by Thays Aparecida de Abreu Silva null (thays7abreu@gmail.com) on 2016-08-24T12:25:29Z
No. of bitstreams: 1
Thays - Final03-08-16.pdf: 1979884 bytes, checksum: 531230641c5b2eb640f10441ac13f396 (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-08-25T13:57:50Z (GMT) No. of bitstreams: 1
santos_taa_dr_ilha.pdf: 1979884 bytes, checksum: 531230641c5b2eb640f10441ac13f396 (MD5) / Made available in DSpace on 2016-08-25T13:57:50Z (GMT). No. of bitstreams: 1
santos_taa_dr_ilha.pdf: 1979884 bytes, checksum: 531230641c5b2eb640f10441ac13f396 (MD5)
Previous issue date: 2016-06-09 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Considerando a crescente demanda de energia elétrica no setor residencial, faz-se necessário conhecer o padrão de consumo de eletricidade de forma detalhada, impulsionando a mudança do comportamento dos consumidores finais, com o objetivo de reduzir o consumo global e a racionalização do uso da energia elétrica. Portanto, conhecer o perfil da curva de carga, com antecedência, é importante para detectar os picos e os vales, e incentivar os consumidores a mudar seus hábitos de consumo de energia, principalmente durante os períodos em que as tarifas são mais caras. Assim, nesta pesquisa propõe-se a utilização de um sistema fuzzy para obter o perfil de carga elétrica residencial. Como o consumo de energia elétrica, em residências, está altamente correlacionado com a ocupação ativa, foram levados em consideração o número de ocupantes na residência e os diferentes períodos do dia ao longo de 24 horas. Com base neste modelo foi possível simular o perfil de carga elétrica, a detecção dos picos que podem comprometer a eficiência do sistema e, consequentemente, oferecer mecanismos para melhorar o gerenciamento de demanda e incentivar a utilização racional de energia elétrica. Com objetivo de verificar a eficiência do sistema fuzzy, comparou-se as curvas de carga obtidas pelo sistema proposto com as curvas de carga reais e por meio desta comparação foi possível observar que os resultados são promissores. / The electrical energy demand is increasing mainly in residences. Therefore, it is necessary to know in advance the electricity pattern consumption. This knowledge is important to change behavior and reduce the global consumption. Furthermore, the load curve profile known in advance can detect the highest points and valleys and force the consumers to change their behavior principally during the high tariffs. Thus, this work proposes a fuzzy system to obtain the electrical load profile in residences. The electrical energy consumption is correlated with the active occupation of the residences, therefore the system considers the quantity of inhabitants and the different periods of the day during 24 hours. Based on this parameters it is possible to obtain the electrical load profile detecting the highest points that can compromise the efficiency of the system, and provide mechanisms to improve the demand managing besides forcing the rational use of electrical energy. To verify the efficiency of the proposed system, the results obtained are compared with real load curves measured in loco concluding that these results are promising.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/143424 |
Date | 09 June 2016 |
Creators | Santos, Thays Aparecida de Abreu [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Lotufo, Anna Diva Plasencia [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | 600 |
Page generated in 0.0019 seconds