Retina located in the back of the eye is not only a vital part of human sight, but also contains valuable information that can be used in biometric security applications, or for the diagnosis of certain diseases. In order to analyze this information from retinal images, its features of blood vessels, microaneurysms and the optic disc require extraction and detection respectively.
We propose a method to extract vessels called MF-FDOG. MF-FDOG consists of using two filters, Matched Filter (MF) and the first-order derivative of Gaussian (FDOG). The vessel map is extracted by applying a threshold to the response of MF, which is adaptively adjusted by the mean response of FDOG. This method allows us to better distinguish vessel objects from non-vessel objects.
Microaneurysm (MA) detection is accomplished with two proposed algorithms, Multi-scale Correlation Filtering (MSCF) and Dictionary Learning (DL) with Sparse Representation Classifier (SRC). MSCF is hierarchical in nature, consisting of two levels: coarse level microaneurysm candidate detection and fine level true microaneurysm detection. In the first level, all possible microaneurysm candidates are found while the second level extracts features from each candidate and compares them to a discrimination table for decision (MA or non-MA). In Dictionary Learning with Sparse Representation Classifier, MA and non-MA objects are extracted from images and used to learn two dictionaries, MA and non-MA. Sparse Representation Classifier is then applied to each MA candidate object detected beforehand, using the two dictionaries to determine class membership. The detection result is further improved by adding a class discrimination term into the Dictionary Learning model. This approach is known as Centralized Dictionary Learning (CDL) with Sparse Representation Classifier.
The optic disc (OD) is an important anatomical feature in retinal images, and its detection is vital for developing automated screening programs. Currently, there is no algorithm designed to automatically detect the OD in fundus images captured from Asians, which are larger and have thicker vessels compared to Caucasians. We propose such a method to complement current algorithms using two steps: OD vessel candidate detection and OD vessel candidate matching.
The proposed extraction/detection approaches are tested in medical applications, specifically the case study of detecting diabetic retinopathy (DR). DR is a complication of diabetes that damages the retina and can lead to blindness. There are four stages of DR and is a leading cause of sight loss in industrialized nations. Using MF-FDOG, blood vessels were extracted from DR images, while DR images fed into MSCF and Dictionary and Centralized Dictionary Learning with Sparse Representation Classifier produced good microaneurysm detection results. Using a new database consisting of only Asian DR patients, we successfully tested our OD detection method. As part of future work we intend to improve existing methods such as enhancing low contrast microaneurysms and better scale selection. In additional, we will extract other features from the retina, develop a generalized OD detection method, apply Dictionary Learning with Sparse Representation Classifier to vessel extraction, and use the new image database to carry out more experiments in medical applications.
Identifer | oai:union.ndltd.org:WATERLOO/oai:uwspace.uwaterloo.ca:10012/5860 |
Date | 19 April 2011 |
Creators | Zhang, Yibo (Bob) |
Source Sets | University of Waterloo Electronic Theses Repository |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Page generated in 0.0021 seconds