Return to search

Tomographic imaging with a scanning laser ophthalmoscope

Retinal imaging with a confocal scanning laser Ophthalmoscope (cSLO) involves scanning a small laser beam over the retina and constructing an image from the reflected light. By applying the confocal principle, tomographic images can be produced by measuring a sequence of slices at different retinal depths. However, the thickness of such slices, when compared with the retinal thickness, is too large to give useful 3D retinal images, if no processing is done. In this work, a prototype cSLO was modified in terms hardware and software to give the ability of doing the tomographic measurements with the maximum theoretical axial resolution possible. A model eye was built to test the performance of the system. A novel algorithm has been developed which fits a double Gaussian curve to the axial intensity profiles generated from a stack of images slices. The underlying assumption is that the laser light has mainly been reflected by two structures in the retina, the internal limiting membrane and the retinal pigment epithelium. From the fitted curve topographic images and novel thickness images of the retina can be generated. Deconvolution algorithms have also been developed to improve the axial resolution of the system, using a theoretically predicted cSLO point spread function. The technique was evaluated using measurements made on a model eye, four normal eyes and seven eyes containing retinal pathology. The reproducibility, accuracy and physiological measurements obtained, were compared with available published data, and showed good agreement. The difference in the measurements when using a double rather than a single Gaussian model was also analysed.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:287711
Date January 1999
CreatorsVieira, Pedro
PublisherUniversity of Aberdeen
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://digitool.abdn.ac.uk/R?func=search-advanced-go&find_code1=WSN&request1=AAIU602005

Page generated in 0.0057 seconds