Return to search

Analysis and interpretation of Aerosol Optical Depth values retrieved from a Brewer spectrophotometer at Uccle, Belgium

Aerosols are particles in the solid or liquid phase that are suspended in the atmosphere. They have an important influence on the atmospheric chemistry and physics, affect the tropospheric chemical composition, can reduce visibility and have important impacts on human health. Aerosols also influence the Earth’s radiation budget. Although a lot of research has been done to investigate the influence of aerosols on the climate, they remain key contributors to the uncertainties in current climate studies due to the lack of information concerning their temporal and spatial distribution. One of the parameters that is of importance to understand the influence of aerosols is the aerosol optical depth (AOD), an integral measurement of the combined aerosol scattering and absorption in the atmospheric column. The first part of this PhD describes an adapted and improved method for the retrieval of AOD values using sun scan measurements from a Brewer spectrophotometer at 340 nm at Uccle. The retrieved AOD values are subjected to a cloud screening technique and are compared to quasi simultaneous, collocated CIMEL AOD values. The good agreement between both instruments highlights that the Brewer is largely sensitive to AOD at 340 nm and it justifies its use in sun scan mode to expand the AOD retrieval network of instruments. The monthly and seasonal behavior of the retrieved AOD values is also studied in this work and our results agree with results found in literature.Another point of concern in scientific communities is the known adverse effect of UV radiation on human health, the biosphere and atmospheric chemistry. Apart from its obvious relation with global solar radiation and ozone, the amount of UV radiation that reaches the surface of the Earth also depends on the characteristics and quantity of aerosols in the atmosphere and accuracy in UV prediction can be improved if the influence of aerosols on surface UV radiation is clarified. For this reason, the second part of this work focuses on the relation between the erythemal UV dose, global solar radiation, total ozone column and AOD (at 320 nm) at Uccle. Simultaneous measurements of these variables are available for a time period of 25 years (1991–2015) and this time series is long enough to allow for reliable determination of significant changes. Different analysis techniques (linear trend analysis, change point analysis and multiple linear regression) are combined to allow for an extensive study of the relations between the variables. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/277633
Date12 October 2018
CreatorsDe Bock, Veerle
ContributorsCoheur, Pierre-François, De Backer, Hugo, Vander Auwera, Jean, Clarisse, Lieven, Bais, Alkis, Van Roozendael, Michel
PublisherUniversite Libre de Bruxelles, Université libre de Bruxelles, Faculté des Sciences – Chimie, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
Format3 full-text file(s): application/pdf | application/pdf | application/pdf
Rights3 full-text file(s): info:eu-repo/semantics/closedAccess | info:eu-repo/semantics/openAccess | info:eu-repo/semantics/restrictedAccess

Page generated in 0.0026 seconds