Return to search

Modeling and analysis of reverse recovery in PiN power diodes in series

Moore's Law influences more than just the speed of the latest microprocessor. The law drives many facets of the semiconductor realm. As Moore's Law continues to prevail, switching frequencies for electronics will rise. These increased switching frequencies will cause transient losses to be augmented, especially for power electronics. However, there has been a lack of work on how to improve the most simple semiconductor power device, the PiN diode. Therefore, considerable effort has been made to reduce switching losses in modern power semiconductor devices. Power diodes are used as a building block for almost all power electronics, especially boost converters for power factor correction. The re5earch presented in this thesis demonstrates that switching losses will be reduced when a power diode is replaced by two lower voltage diodes arranged in series. One such company, Q-speed, is already implementing such a technique [l]. The company is using two fast recovery diodes on one integrated circuit. Q-speed's results were comparable to more expensive methods to reduce switching losses such as the use of exotic materials like silicon-carbide. There have been many models to date for the PiN diode, but no research ha5 been published about this innovative idea. Research gathered in this thesis from extensive TCAD simulations and experiments will enlighten the power semiconductor field to this interesting approach.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-1729
Date01 January 2008
CreatorsLandowshi, Matthew M.
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
SourceHIM 1990-2015

Page generated in 0.002 seconds