This thesis deals with the problems of scaling aerodynamic data from wind tunnel conditions to free flight. The main challenges when this scaling should be performed is how the model support, wall interference and the potentially lower Reynolds number in the wind tunnel should be corrected. Computational Fluid Dynamics (CFD) simulations have been performed on a modern transonic transport aircraft in order to reveal Reynolds number effects and how these should be scaled accurately. This investigation also examined how the European Transonic Wind tunnel (ETW) twin sting model support influences the flow over the aircraft. In order to further examine Reynolds number effects a MATLAB based code capable of extracting local boundary layer properties from structured and unstructured CFD calculations have been developed and validated against wind tunnel measurements. A general scaling methodology is presented. / QC 20101123
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-4122 |
Date | January 2006 |
Creators | Pettersson, Karl |
Publisher | KTH, Farkost och flyg, Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Trita-AVE, 1651-7660 ; 2006:64 |
Page generated in 0.0021 seconds