Return to search

Magnetická rezonance a výpočetní hemodynamika / Magnetic resonance imaging and computational fluid hemodynamics

This thesis is focused on study of blood flow through the descending aorta using mag- netic resonance imaging and computational hemodynamics. This combination enables simulations of blood flow in patient specific geometries and under various circumstances such as higher heart rate, velocity or blood pressure. The theoretical part describes the governing equations of the blood flow and possible choices of boundary conditions. The weak formulation and discretization in space and time, which leads to the finite element approximation, is presented. The magnetic resonance data is presented in the second part. The process of segmenta- tion is described together with the preparation of the velocity data for comparison with simulation results. Limitations of magnetic resonance imaging are also presented. The developed methodology is one of the contributions of this thesis. The qualitative and quantitative comparison of simulation results and the magnetic res- onance velocity data is presented in the third part. The main result of the thesis is in the comparison of the flow under different wall boundary conditions. The most important finding is that the best fit for the data is the free-slip wall boundary condition, which is the opposite of commonly used no-slip wall boundary condition. 1

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:416070
Date January 2020
CreatorsJarolímová, Alena
ContributorsŠvihlová, Helena, Tůma, Karel
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0016 seconds