Return to search

Influence of salinity and hormones on the expression of cystic fibrosis transmembrane conductance regulator in a marine teleost Sparus sarba.

Yuen, Wing Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 136-155). / Abstract also in Chinese. / Chapter I --- Title page --- p.i / Chapter II --- Acknowledgements --- p.ii / Chapter III --- Abstract --- p.iii / Chapter IV --- Abstract (Chinese version) --- p.vi / Chapter V --- Table of contents --- p.viii / Chapter VI --- List of abbreviations --- p.xv / Chapter VII --- List of figures --- p.xvi / Chapter Chapter 1 --- General introduction --- p.1 / Chapter Chapter 2 --- Literature review --- p.5 / Chapter 2.1 --- Cystic fibrosis transmembrane conductance regulator in human --- p.5 / Chapter 2.1.1. --- Pathology of cystic fibrosis --- p.5 / Chapter 2.1.2. --- CFTR gene and the encoded protein --- p.6 / Chapter 2.1.3. --- Hypothetical model for CFTR function --- p.7 / Chapter 2.1.4. --- Functions of CFTR --- p.7 / Chapter 2.1.5. --- Regulation of CFTR gene expression --- p.8 / Chapter 2.1.6 --- Regulation of CFTR protein --- p.9 / Chapter 2.1.7. --- Discovery of CFTR homologues in other vertebrates --- p.10 / Chapter 2.2 --- Cystic fibrosis transmembrane conductance regulator in teleosts --- p.10 / Chapter 2.2.1. --- Evidence for the presence of CFTR homologue in teleosts --- p.10 / Chapter 2.2.2. --- Molecular cloning of teleost CFTR genes --- p.11 / Chapter 2.2.3. --- Role of teleost CFTR in osmoregulation --- p.13 / Chapter 2.2.3.1. --- Tissue distribution of CFTR --- p.13 / Chapter 2.2.3.2. --- Changes in CFTR expression in response to ambient salinities --- p.14 / Chapter 2.2.3.3. --- Immunocytochemical studies of CFTR --- p.15 / Chapter 2.2.3.4. --- Regulation of CFTR --- p.17 / Chapter 2.3 --- Osmoregulation in teleosts --- p.19 / Chapter 2.3.1. --- Importance of osmoregulation --- p.19 / Chapter 2.3.2. --- Major components of chloride cells in marine teleosts --- p.20 / Chapter 2.3.2.1. --- Overview --- p.20 / Chapter 2.3.2.2. --- Sodium-potassium adenosine triphosphatase (Na+,K+-ATPase) --- p.21 / Chapter 2.3.2.3. --- Cystic fibrosis transmembrane conductance regulator (CFTR) --- p.22 / Chapter 2.3.2.4. --- Na+/K+/2Cr cotransporter (NKCC) --- p.23 / Chapter 2.3.2.5. --- Potassium (K+) channel --- p.25 / Chapter 2.4 --- Endocrine control of osmoregulation --- p.26 / Chapter 2.4.1. --- Overview --- p.26 / Chapter 2.4.2. --- Growth hormone (GH) and insulin-like growth factor I (IGF-I) --- p.27 / Chapter 2.4.2.1. --- Role of GH in osmoregulation --- p.27 / Chapter 2.4.2.2. --- Mediation through IGF-I --- p.29 / Chapter 2.4.2.3. --- Synergic effect with cortisol --- p.30 / Chapter 2.4.3. --- Prolactin (PRL) --- p.30 / Chapter 2.4.3.1. --- Role of PRL in osmoregulation --- p.30 / Chapter 2.4.3.2. --- Synergic effect with cortisol --- p.33 / Chapter 2.4.4. --- Cortisol --- p.33 / Chapter 2.4.4.1. --- Role of cortisol in osmoregulation --- p.33 / Chapter 2.4.4.2. --- Dual functions of cortisol --- p.34 / Chapter Chapter 3 --- Cloning and tissue distribution of silver sea bream CFTR gene --- p.36 / Chapter 3.1 --- Introduction --- p.36 / Chapter 3.2 --- Materials and methods --- p.38 / Chapter 3.2.1. --- Part A: Cloning of silver sea bream CFTR gene --- p.38 / Chapter 3.2.1.1. --- Fish and culture conditions --- p.38 / Chapter 3.2.1.2. --- Sampling of fish --- p.38 / Chapter 3.2.1.3. --- Preparation of first strand cDNA --- p.38 / Chapter 3.2.1.4. --- Design of primers --- p.39 / Chapter 3.2.1.5. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.40 / Chapter 3.2.1.6 --- Cloning --- p.41 / Chapter 3.2.2. --- Part B: Tissue distribution of CFTR in silver sea bream --- p.41 / Chapter 3.2.2.1. --- Fish and culture conditions --- p.41 / Chapter 3.2.2.2. --- Tissue sampling --- p.42 / Chapter 3.2.2.3. --- Preparation of first strand cDNA --- p.42 / Chapter 3.2.2.4 --- Design of primers --- p.42 / Chapter 3.2.2.5. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.43 / Chapter 3.3 --- Results --- p.44 / Chapter 3.3.1. --- Part A: Cloning of silver sea bream CFTR gene --- p.44 / Chapter 3.3.2. --- Part B: Tissue distribution of CFTR in silver sea bream --- p.60 / Chapter 3.4 --- Discussion --- p.62 / Chapter 3.4.1. --- Part A: Cloning of silver sea bream CFTR --- p.62 / Chapter 3.4.2. --- Part B: Tissue distribution of CFTR in silver sea bream --- p.64 / Chapter Chapter 4 --- Effect of salinity on CFTR mRNA expression in gill and posterior intestine of silver sea bream --- p.68 / Chapter 4.1 --- Introduction --- p.68 / Chapter 4.2 --- Materials and methods --- p.70 / Chapter 4.2.1. --- Part A: Effect of long-term exposure to different salinities on CFTR expression --- p.70 / Chapter 4.2.1.1. --- Experimental fish and salinity adaptation --- p.70 / Chapter 4.2.1.2. --- Tissue sampling --- p.70 / Chapter 4.2.1.3. --- Serum ion levels --- p.71 / Chapter 4.2.1.4. --- Preparation of first strand cDNA --- p.71 / Chapter 4.2.1.5. --- Design of primers --- p.71 / Chapter 4.2.1.6. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.71 / Chapter 4.2.1.7. --- Statistical analysis --- p.72 / Chapter 4.2.2. --- Part B: Effect of abrupt transfer on CFTR expression --- p.73 / Chapter 4.2.2.1. --- Experimental fish --- p.73 / Chapter 4.2.2.2. --- Experimental design --- p.73 / Chapter 4.2.2.2.1 --- Experiment 1: Abrupt transfer from seawater (SW) to 6 ppt --- p.73 / Chapter 4.2.2.2.2. --- Experiment 2: Abrupt transfer from 6 ppt to SW --- p.73 / Chapter 4.2.2.3. --- Tissue sampling --- p.74 / Chapter 4.2.2.4. --- Serum ion levels --- p.74 / Chapter 4.2.2.5. --- Preparation of first strand cDNA --- p.74 / Chapter 4.2.2.6. --- Design of primers --- p.75 / Chapter 4.2.2.7. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.75 / Chapter 4.2.2.8. --- Statistical analysis --- p.75 / Chapter 4.3 --- Results --- p.76 / Chapter 4.3.1. --- Part A: Effect of long-term exposure to different salinities on CFTR expression --- p.76 / Chapter 4.3.1.1. --- Serum ion levels --- p.76 / Chapter 4.3.1.2. --- CFTR expression in gill --- p.76 / Chapter 4.3.1.3. --- CFTR expression in posterior intestine --- p.76 / Chapter 4.3.2. --- Part B: Effect of abrupt salinity transfer on CFTR expression --- p.83 / Chapter 4.3.2.1. --- Experiment 1: Abrupt transfer from SW to 6 ppt --- p.83 / Chapter 4.3.2.1.1. --- Serum ion levels --- p.83 / Chapter 4.3.2.1.2. --- CFTR in gill --- p.83 / Chapter 4.3.2.1.3. --- CFTR in posterior intestine --- p.83 / Chapter 4.3.2.2. --- Experiment 2: Abrupt transfer from 6 ppt to SW --- p.89 / Chapter 4.3.2.2.1. --- Serum ion levels --- p.89 / Chapter 4.3.2.2.2. --- CFTR in gill --- p.89 / Chapter 4.3.2.2.3. --- CFTR in posterior intestine --- p.89 / Chapter 4.4 --- Discussion --- p.95 / Chapter 4.4.1. --- Long-term exposure to various salinities --- p.95 / Chapter 4.4.2. --- Abrupt salinity transfer --- p.98 / Chapter 4.4.2.1. --- Abrupt hypo-osmotic transfer (33 ppt to 6 ppt) --- p.98 / Chapter 4.4.2.2. --- Abrupt seawater transfer (6 ppt to 33 ppt) --- p.99 / Chapter 4.4.3. --- CFTR mRNA expression in posterior intestine --- p.101 / Chapter 4.4.4. --- Conclusion --- p.101 / Chapter Chapter 5 --- Effect of hormones on CFTR expression in gill and posterior intestine of silver sea bream --- p.102 / Chapter 5.1 --- Introduction --- p.102 / Chapter 5.2 --- Materials and methods --- p.104 / Chapter 5.2.1. --- Part A: In vivo effect of hormones on CFTR expression --- p.104 / Chapter 5.2.1.1. --- Experimental fish and salinity adaptation --- p.104 / Chapter 5.2.1.2. --- Hormone treatment --- p.104 / Chapter 5.2.1.3. --- Tissue sampling --- p.105 / Chapter 5.2.1.4. --- "Serum ion levels, preparation of first strand cDNA, design of primers and semi-quantitative reverse transcriptase (RT)-PCR" --- p.105 / Chapter 5.2.1.5. --- Statistical analysis --- p.105 / Chapter 5.2.2. --- Part B: In vitro effect of hormones on CFTR expression --- p.106 / Chapter 5.2.2.1. --- Fish and culture conditions --- p.106 / Chapter 5.2.2.2. --- Gill and posterior intestine preparations --- p.106 / Chapter 5.2.2.3. --- Hormone treatment --- p.106 / Chapter 5.2.2.4. --- "Preparation of first strand cDNA, design of primers and semi-quantitative reverse transcriptase (RT)-PCR" --- p.107 / Chapter 5.2.2.5. --- Statistical analysis --- p.107 / Chapter 5.3 --- Results --- p.108 / Chapter 5.3.1. --- Part A: In vivo effect of hormones on CFTR expression --- p.108 / Chapter 5.3.1.1. --- Serum ion levels --- p.108 / Chapter 5.3.1.1.1. --- Serum [Na+] level --- p.108 / Chapter 5.3.1.1.2. --- Serum [K+] level --- p.108 / Chapter 5.3.1.1.3. --- Serum [Cl' ] level --- p.108 / Chapter 5.3.1.2. --- CFTR expression in gill --- p.109 / Chapter 5.3.1.3. --- CFTR expression in posterior intestine --- p.109 / Chapter 5.3.2. --- Part B: In vitro effect of hormones on CFTR expression --- p.115 / Chapter 5.3.2.1. --- CFTR expression in gill --- p.115 / Chapter 5.3.2.2. --- CFTR expression in posterior intestine --- p.115 / Chapter 5.4 --- Discussion --- p.122 / Chapter 5.4.1. --- Effects of cortisol on CFTR expression --- p.122 / Chapter 5.4.2. --- Effects of growth hormone on CFTR expression --- p.124 / Chapter 5.4.3. --- Effects of prolactin on CFTR expression --- p.127 / Chapter 5.4.4. --- "Overall effect of cortisol, growth hormone and prolactin on CFTR expression" --- p.128 / Chapter 5.4.5 --- Conclusion --- p.130 / Chapter Chapter 6 --- General discussion and conclusion --- p.132 / References --- p.136

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326727
Date January 2009
ContributorsYuen, Wing Sum., Chinese University of Hong Kong Graduate School. Division of Life Sciences.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xix, 155 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0031 seconds