Return to search

Synthesis and characterisation of oxorhenium(V) and tricarbonylrhenium(I) complexes with biologically active N, O and N, S-Donor ligands

This study investigated the synthesis of rhenium(I) and rhenium(V) complexes with a variety of multidentate NS, NSO, NO and SO-donor ligands. It also investigated the synthesis of dinuclear dihalogeno- and trihalogeno-bridged rhenium(I) complexes based on the fac-[Re(CO)3]+ core. The reactions of hydrated folic acid with [Re(CO)5X] (X = Cl, Br) were studied, and the complexes [Re(CO)3(H2O)3]+[Re2(μ-X)3CO)6]−.5H2O [X= Br (1), Cl(2)] were isolated. The reaction of orotic acid potassium salt [Re(CO)5Br] was performed, and the complex [Re2(μ-Br)2(CO)8] was isolated. The reaction of bis(piperidin-1- yl)methanone with [Re(CO)5Cl] followed by recrystallisation of the resulting precipitate in dichloromethane/acetontrile resulted in the complex [Re2(μ- Cl)2(CO)6(MeCN)2]. The X-ray crystal structures show that all these complexes display a distorted octahedral geometry around the central rhenium atoms. The reactions of aroylhydrazone-based ligands such as 3-((pyridin- 2yl)methyleneamino)-2,3-dihydro-2-pyridin-2yl)quinazolin-4-(1H)-one (Hppq) and N-(di(pyridin-2-yl)methylene)benzohydrazide (Hdpmb) with [Re(CO)5Cl] were studied and led to the formation of the complexes [Re(CO)3Cl(Hdpmb)] and [Re(CO)3Cl(Hppq)]. The Hdpmb and Hppq coordinated to the fac-[Re(CO)3]+ core as neutral bidentate chalates via the pyridinic nitrogens (for Hdpmb) and via imino and pyridinic nitrogens for Hppq. The X-ray crystal structures show that the geometry around the rhenium in both complexes is a distorted octahedral. The treatment of the dithizone (H2dz) ligand with rhenium(V) precursors containing a triphenylphosphine group (PPh3) led to the decomposition of dithizone. The decomposition product reacted with the triphenylphosphine group and generated a new ligand triphenylphosphazeno-N-phenylmethanethiohydrazide (H2L). The reaction of trans-[ReOX3(PPh3)2] (X = Cl, Br) with dithizone (H2dz) led to the complex [ReO(dz)2][ReO(HL)2]. The reaction of trans-[ReOI2(OEt)(PPh3)2] with H2dz led to the same product. The reaction of cis-[ReO2I(PPh3)2] with H2dz in methanol led to [ReO(dz)2][ReO(HL)2](MeOH)2 in which methanol bonded to HLvia hydrogen bonds. The H2dz was doubly deprotonated and coordinated to the [ReO]3+ moiety via a thiolate sulfur and deprotonated hydrazinic nitrogen to yield [ReO(dz)2]−, while the H2L was singly deprotonated and coordinated to [ReO]3+ moiety via the neutral sulfur atom and deprotonated hydrazinic nitrogen to yield [ReO(HL)2]+. The X-ray crystal structure show that in both [ReO(HL)2]+ and [ReO(dz)2]−, the rhenium atoms are five-coordinated and adopt a distorted squarebased pyramidal geometry. The reaction of thiosemicarbazones such as salcylidene-4- phenylthiosemicarbazide (H3salpt) with cis-[ReO2I(PPh3)2] was investigated and led to the complex [ReO(Hsalpt)(H2salpt)]. The X-ray study reveals that Hsalpt is present as a tridentate chelate coordinating via the thiolate sulfur, imino nitrogen and phenolic oxygen, while H2salpt coordinates as a bidentate chelate via the thiolate sulfur and imino nitrogen atoms. The geometry around rhenium is distorted octahedral. The coordination mode of the benzoylthiourea derivatives 4-tert-butyl-N- (diphenylcarbamothioyl)benzamide (Htpb) and N-(diethylcarbamothioyl)benzamide (Heb) to the [Re2O3]4+ and fac-[Re(CO)3]+ cores were investigated. The reaction of [Re(CO)5Cl] in presence of sodium acetate with Htpb led to the dimeric complex [Re(CO)3(tpb)]2 in which the tpb coordinated to the fac-[Re(CO)3]+ core via the ketonic oxygen and bridging thiolate sulfur. The same reaction with Heb led to the monomeric complex [Re(CO)3(eb)(Heb)], in which the eb coordinates to the fac-[Re(CO)3]+core via thiolate sulfur and ketonic oxygen with Heb binding via the neutral sulfur atom. The reaction of Heb with cis-[ReO2I(PPh3)2] at room temperature with excess of sodium acetate led to the dimeric complex (μ-O)[ReO(eb)2]2 in which Heb is present as a monoanionic (deprotonated) bidentate with coordination through the thiolate sulfur and ketonic oxygen.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nmmu/vital:10437
Date January 2013
CreatorsMukiza, Janvier
PublisherNelson Mandela Metropolitan University, Faculty of Science
Source SetsSouth African National ETD Portal
LanguageEnglish
Detected LanguageEnglish
TypeThesis, Masters, MSc
Formatvii, 143 leaves, pdf
RightsNelson Mandela Metropolitan University

Page generated in 0.0023 seconds