Iron is essential to the majority of microorganisms; it is an important cofactor in many cellular processes and enzymes. However in an aerobic environment and at biological pH, iron is primarily found as insoluble oxyhydroxides and is unavailable to microorganisms. Many bacteria have the ability to produce siderophores, low molecular weight compounds that have a high affinity for Fe3+. Siderophores are part of a multi-component system that actively transports the iron-siderophore complex into the cytoplasm. Rhizobia are characterized by their ability to form symbiotic relationships with leguminous plants, where they can fix nitrogen for the host plant and the plant provides the bacteria with nutrients. Under iron-limiting conditions, Rhizobia are known to produce siderophores. Rhizobium leguminosarum IARI 917 produces one dihydroxamate-type siderophore. This siderophore has been purified and chemically characterized. Results indicate that this strain is producing schizokinen, which has not been described in a member of the Rhizobia family.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-2207 |
Date | 16 August 2005 |
Creators | Storey, Erin P. |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0017 seconds