Return to search

Reverse Fountain Cytoplasmic Streaming in Rhizopus Oryzae

abstract: The intracellular motility seen in the cytoplasm of angiosperm plant pollen tubes is known as reverse fountain cytoplasmic streaming (i.e., cyclosis). This effect occurs when organelles move anterograde along the cortex of the cell and retrograde down the center of the cell. The result is a displacement of cytoplasmic volume causing a cyclic motion of organelles and bulk liquid. Visually, the organelles appear to be traveling in a backwards fountain hence the name. The use of light microscopy bioimaging in this study has documented reverse fountain cytoplasmic streaming for the first time in fungal hyphae of Rhizopus oryzae and other members in the order Mucorales (Mucoromycota). This is a unique characteristic of the mucoralean fungi, with other fungal phyla (e.g., Ascomycota, Basidiomycota) exhibiting unidirectional cytoplasmic behavior that lacks rhythmic streaming (i.e., sleeve-like streaming). The mechanism of reverse fountain cytoplasmic streaming in filamentous fungi is currently unknown. However, in angiosperm plant pollen tubes it’s correlated with the arrangement and activity of the actin cytoskeleton. Thus, the current work assumes that filamentous actin and associated proteins are directly involved with the cytoplasmic behavior in Mucorales hyphae. From an evolutionary perspective, fungi in the Mucorales may have developed reverse fountain cytoplasmic streaming as a method to transport various organelles over long and short distances. In addition, the mechanism is likely to facilitate driving of polarized hyphal growth. / Dissertation/Thesis / Masters Thesis Molecular and Cellular Biology 2020

Identiferoai:union.ndltd.org:asu.edu/item:57445
Date January 2020
ContributorsShange, Phakade Mdima (Author), Roberson, Robert W (Advisor), Gile, Gillian (Committee member), Baluch, Debra (Committee member), Arizona State University (Publisher)
Source SetsArizona State University
LanguageEnglish
Detected LanguageEnglish
TypeMasters Thesis
Format52 pages
Rightshttp://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.179 seconds