Return to search

Structure-Exploiting Numerical Algorithms for Optimal Control

Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution. / Numeriska algoritmer för att effektivt lösa optimala styrningsproblem är en viktig komponent i avancerade regler- och estimeringsstrategier som exempelvis modellprediktiv reglering (eng. model predictive control (MPC)) och glidande horisont estimering (eng. moving horizon estimation (MHE)). MPC är en reglerstrategi som kan användas för att styra system med flera styrsignaler och/eller utsignaler samt ta hänsyn till exempelvis begränsningar i styrdon. Den grundläggande principen för MPC och MHE är att styrsignalen och de estimerade variablerna kan beräknas genom att lösa ett optimalt styrningsproblem. Detta optimeringsproblem måste lösas inom en kort tidsram varje gång som en styrsignal ska beräknas eller som variabler ska estimeras, och således är det viktigt att det finns effektiva algoritmer för att lösa denna typ av problem. Två vanliga sådana är inrepunkts-metoder (eng. interior-point (IP)) och aktivmängd-metoder (eng. active-set (AS)), där optimeringsproblemet löses genom att lösa ett antal enklare delproblem. Ett av huvudfokusen i denna avhandling är att beräkna lösningen till dessa delproblem på ett tidseffektivt sätt genom att utnyttja strukturen i delproblemen. Lösningen till ett delproblem beräknas genom att lösa ett linjärt ekvationssystem. Detta ekvationssystem kan man exempelvis lösa med generella metoder eller med så kallade Riccatirekursioner som utnyttjar strukturen i problemet. När man använder en AS-metod för att lösa MPC-problemet så görs endast små strukturerade ändringar av ekvationssystemet mellan varje delproblem, vilket inte har utnyttjats tidigare tillsammans med Riccatirekursionen. I denna avhandling presenteras ett sätt att utnyttja detta genom att bara göra små förändringar av Riccatirekursionen för att minska beräkningstiden för att lösa delproblemet. Idag har behovet av  parallella algoritmer för att lösa MPC och MHE problem ökat. Att algoritmerna är parallella innebär att beräkningar kan ske på olika delar av problemet samtidigt med syftet att minska den totala verkliga beräkningstiden för att lösa optimeringsproblemet. I denna avhandling presenteras parallella algoritmer som kan användas i både IP- och AS-metoder. Algoritmerna beräknar lösningen till delproblemen parallellt med ett förutbestämt antal steg, till skillnad från många andra parallella algoritmer där ett okänt (ofta stort) antal steg krävs. De parallella algoritmerna utnyttjar problemstrukturen för att lösa delproblemen effektivt, och en av dem har utvärderats på parallell hårdvara. Linjära MPC problem kan också lösas genom att utnyttja teori från multiparametrisk kvadratisk programmering (eng. multiparametric quadratic programming (mp-QP)) där den optimala lösningen beräknas i förhand och lagras i en tabell, vilket benämns explicit MPC. I detta fall behöver inte MPC problemet lösas varje gång en styrsignal beräknas, utan istället kan den förberäknade optimala styrsignalen slås upp. En nackdel med mp-QP är att det krävs mycket plats i minnet för att spara lösningen. I denna avhandling presenteras en strukturutnyttjande algoritm som kan minska behovet av minne för att spara lösningen, vilket kan öka det praktiska användningsområdet för mp-QP och explicit MPC.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-136559
Date January 2017
CreatorsNielsen, Isak
PublisherLinköpings universitet, Reglerteknik, Linköpings universitet, Tekniska fakulteten, Linköping
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeDoctoral thesis, monograph, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinköping Studies in Science and Technology. Dissertations, 0345-7524 ; 1848

Page generated in 0.083 seconds