Return to search

Short-time Asymptotic Analysis of the Manakov System

The Manakov system appears in the physics of optical fibers, as well as in quantum mechanics, as multi-component versions of the Nonlinear Schr\"odinger and the Gross-Pitaevskii equations.Although the Manakov system is completely integrable its solutions are far from being explicit in most cases. However, the Inverse Scattering Transform (IST) can be exploited to obtain asymptotic information about solutions.This thesis will describe the IST of the Manakov system, and its asymptotic behavior at short times. I will compare the focusing and defocusing behavior, numerically and analytically, for squared barrier initial potentials. Finally, I will show that the continuous spectrum gives the dominant contribution at short-times.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195734
Date January 2006
CreatorsEspinola Rocha, Jesus Adrian
ContributorsErcolani, Nicholas, McLaughlin, Kenneth, Ercolani, Nicholas, McLaughlin, Kenneth, Zakharov, Vladimir
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds