Return to search

Antiviral Activity of Favipiravir (T-705) Against Lethal Rift Valley Fever Virus Infection in Hamsters

Rift Valley Fever is a zoonotic, arthropod-borne disease that adversely affects ungulates and people. The etiologic agent, Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus), is primarily transmitted through mosquito bites, yet can be transmitted by exposure to infectious aerosols. Presently, there are no licensed vaccines or therapeutics to prevent or treat severe RVFV infection in humans. We have previously reported on the activity of favipiravir (T-705) against the MP-12 vaccine strain of RVFV and other bunyaviruses in cell culture. Additionally, efficacy has been documented in mouse and hamster models of infection with the related Punta Toro virus. Here, we characterize a hamster RVFV challenge model and use it to evaluate the activity of favipiravir against the highly pathogenic ZH501 strain of the virus. Subcutaneous RVFV challenge resulted in substantial serum and tissue viral loads and caused severe disease and mortality within 2-3 days after infection. Oral favipiravir (200 mg/kg/day) prevented mortality in 60% or greater in hamsters challenged with RVFV when administered within 6 h post-exposure and reduced RVFV titers in serum and tissues relative to the time of treatment initiation. In contrast, although ribavirin (75 mg/kg/day) was effective at protecting animals from the peracute RVFV disease, most ultimately succumbed from a delayed-onset neurologic disease associated with high RVFV burden in the brain observed in moribund animals. When combined, T-705 and ribavirin treatment started 24 h post-infection significantly improved survival outcome and reduced serum and tissue virus titers compared to monotherapy. Our findings demonstrate significant post-RVFV exposure efficacy with favipiravir against both peracute disease and delayed-onset neuroinvasion, and suggest added benefit when combined with ribavirin.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-3337
Date01 May 2014
CreatorsScharton, Dionna
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0023 seconds