This thesis carries out some of classical integration theory in the context of an operator algebra. The starting point is measure on the projections of an abelian von Neumann algebra. This yields an integral on the self-adjoint operators whose spectral projections lie in the algebra. For this integral a Radon-Nikodym theorem, as well as the usual convergence theorems is proved.
The methods and results of this thesis generalize, to non-commutative von Neumann Algebras [2, 3, 5].
(1) J. Dixmier Les Algèbres d'Opérateurs dans l'Espace Hilbertien. Paris, 1957.
(2) H.A. Dye The Radon-Nikodym theorem for finite rings
of operators, Trans. Amer. Math. Soc, 72, 1952, 243-230.
(3) F.J. Murray and J. von Neumann,
On Rings of Operators, Ann. Math. 37, 1936, 116-229.
(4) F. RIesz and B. v. Sz.-Nagy,
Functional Analysis, New York, 1955.
(5) I.E. Segal A non-commutative extension of abstract
integration, Ann. of Math. (2) 57, 1953, 401-457. / Science, Faculty of / Mathematics, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/36976 |
Date | January 1966 |
Creators | Kerr, Charles R. |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Rights | For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. |
Page generated in 0.0014 seconds