Return to search

In the Zone: the Effects of Soil Pipes and Dunes on Hyporheic and Riparian Zone Hydraulics and Biogeochemistry

Streams and rivers are a vital part of our ecosystem. They are imperiled by human ecological activities such as urbanization, industrialization, and agriculture which discharge excess nitrate and other pollutants into our waterways. Here, this dissertation seeks to understand the physical and biogeochemical processes which attenuate pollutants in stream corridors. The focus is hyporheic zones which form the interface between surface water and groundwater below and adjacent to stream channels, and riparian zones which form the interface between channels and adjacent uplands, both of which can attenuate pollutants. In this context, soil-pipes can dominate subsurface hydraulics. This research first employed MODFLOW and MT3D-USGS to model transient hyporheic hydraulics and nitrate transport in a length of riparian/riverbank soil to probe the effects of soil pipes on hydraulics and denitrification due to peak flow events in the channel. Findings showed that inserting just one soil pipe 1.5 m in length caused a ~75% increase in both hyporheic exchange and denitrification. A rough upscaling showed soil pipes could remove up to ~3% of nitrate along a 1-km reach. Next, the ability of soil pipes to bypass the often championed ability of riparian buffers to remove nitrate migrating from uplands to the channel was evaluated. This effort also employed MODFLOW and MT3D-USGS to simulated hydraulics and nitrate removal along a length of riparian soil. Findings showed that soil pipes increased flow of nitrate to the banks by five orders of magnitude in some cases. We posited a non-dimension parameter which governs when nitrate bypass is significant. In addition to soil pipes, dune bedforms can also enhance hyporheic exchange, primarily in the stream/riverbed. Again employing MODFLOW but now pairing with the transport code SEAM3D to simulate microbially-mediated aerobic metabolism of dissolved organic carbon and dissolved oxygen, the combined effects of dune translation and microbial growth and death were explored. Major findings include that neglecting microbial growth can lead to inaccurate modeling of biogeochemistry, and that aerobic metabolism increased with celerity. The results herein bolster knowledge of natural pollutant attenuation in stream and river corridors, and have implications for pollutant mitigation strategy and stream credit allocation. / Doctor of Philosophy / Streams are a vital part of our ecosystem. They are imperiled by human ecological activities such as urbanization, industrialization, and agriculture which discharge nitrate and other pollutants into our waterways. Here, this dissertation seeks to understand the physical and biological processes which attenuate pollutants. The hyporheic zone is the interface between surface water and groundwater below the bed and adjacent to stream banks, and can attenuate pollutants. Transient peak flow events such as a storm or snow melt raise the stream water levels, causing the water pressure in the stream channel to temporarily outweigh the water pressure in the soil pore spaces adjacent to the stream channel. This drives water into the banks subjecting it to pollutant attenuation processes. Soil pipes (long cylindrical void spaces created by decayed plant roots) are prevalent along stream banks, and they dominate subsurface hydraulics. This dissertation implemented a numerical study on a chunk of riparian soil to probe the effects of soil pipes on hydraulics and denitrification. Findings showed that inserting just one – 1.5 m soil pipe caused a ~75% increase in both water flow volume into the bank and nitrate removal. Riparian buffers are the vegetated strips adjacent to stream channels and have long been championed as stalwarts of pollutant removal. Soil pipes undermine this by acting as a bypass mechanism. A numerical study was again performed on a chunk of riparian soil to quantify the effects soil pipes on riparian bypass of nitrate. Findings showed that soil pipes increased flow of nitrate to the banks by five orders of magnitude in some cases. This means that a buffer enhancement strip with fine roots that prevent the formation of soil pipes should be installed along riparian buffers. In addition to soil pipes, dune bedforms can increase flowrate of water into the hyporheic zone. This dissertation modeled the combined effects of dune translation and microbial growth and death. Major findings include that neglecting microbial growth can lead to inaccurate modeling of biogeochemistry, and that biodegradation increases with increased dune velocity. The results herein bolster knowledge on natural pollutant attenuation in streams, and have implications in terms of pollutant mitigation strategy and stream credit allocation.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/110744
Date10 June 2022
CreatorsLotts, William Seth
ContributorsCivil and Environmental Engineering, Hester, Erich Todd, Widdowson, Mark A., Strom, Kyle Brent, Scott, Durelle T.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsCreative Commons Attribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0619 seconds