Construction projects are complicated and fraught with so many risks that many
projects are unable to meet pre-defined project objectives. Managers of construction
projects require decision support tools that can be used to identify, analyze and
implement measures that can mitigate the effects of project risks. Several risk analysis
techniques have been developed over the years to enable construction project managers
to make useful decisions that can improve the chances of project success. These risk
analysis techniques however fail to simultaneously address risks relating to cost,
schedule and quality. Also, construction projects may have scarce resources and
construction managers still bear the responsibility of ensuring that project goals are met.
Certain projects require trade-offs between technical and managerial risks and managers
need tools that can help them do this.
This thesis evaluates the usefulness of the Advanced Programmatic Risk
Analysis and Management Model (APRAM) as a decision support tool for managing
construction projects. The development of a visitor center in Midland, Texas was used as
a case study for this research. The case study involved the implementation of APRAM during the concept phase of project development to determine the best construction
system that can minimize the expected cost of failure. A risk analysis performed using a
more standard approach yielded an expected cost of failure that is almost eight times the
expected cost of failure yielded by APRAM.
This study concludes that APRAM is a risk analysis technique that can minimize
the expected costs of failure by integrating project risks of time, budget and quality
through the allocation of resources. APRAM can also be useful for making construction
management decisions. All identified component or material configurations for each
alternative system however, should be analyzed instead of analyzing only the lowest cost
alternative for each system as proposed by the original APRAM model. In addition, it is
not possible to use decision trees to determine the optimal allocation of management
reserves that would mitigate managerial problems during construction projects.
Furthermore, APRAM does not address the issue of safety during construction and
assumes all identifiable risks can be handled with money.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/5813 |
Date | 17 September 2007 |
Creators | Imbeah, William Kweku Ansah |
Contributors | Guikema, Seth D. |
Publisher | Texas A&M University |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | Book, Thesis, Electronic Thesis, text |
Format | 6752074 bytes, electronic, application/pdf, born digital |
Page generated in 0.0023 seconds