Return to search

Effects of DDT on aquatic organisms in the Luvuvhu River

Ph.D. / The toxicant dichlorodiphenyl-trichloroethane, commonly known as DDT, is a broad spectrum insecticide and is currently banned in most countries due to its toxic effects. However, in some countries restricted use of DDT has been authorized as an effective vector control within malarial control programmes. South Africa is one such country, where spraying of DDT occurs in three provinces including the Limpopo Province, KwaZulu Natal and Mpumalanga. Specifically in the Limpopo Province, spraying of DDT has been ongoing for almost 56 years within the eastern malaria belt of the province. Despite this long term spraying there is still a scarcity of data regarding DDT and its effects on indigenous aquatic organisms in South Africa. Any research regarding DDT will therefore be of the utmost value. It was in this context that the present study was initiated, which primarily aimed to assess the extent of contamination within DDT sprayed areas in South Africa and the associated effects on indigenous species, whilst identifying techniques that could be used in future monitoring of these areas. This assessment was done in the Luvuvhu River catchment at three reference sites and four exposure sites situated within the areas where indoor residual spraying of DDT is done annually. At these sites the extent of DDT contamination within the water, sediment and biota (using the bioindicator pecies C. gariepinus from only the lentic sites) in the Luvuvhu river was evaluated. The results showed that DDT concentrations were well above recommended levels in all three of the measured phases, with the highest concentrations predominantly observed at the Xikundu weir. This site was particularly impacted by DDT due to a combination of its close proximity to the DDT sprayed areas, concentration accumulation from upstream sources and environmental conditions that accentuated contamination. These elevated levels of DDT did, however, not induce significant quantifiable effects in the bioindicator C. gariepinus or in the fish and macro-invertebrate community structures. Specifically, the effects in the catfish, C. gariepinus, were assessed using a range of biomarkers specific to the endocrine disrupting effects of DDT, including indirect measures of vitellogenin (calcium, zinc, magnesium and alkali-labile phosphate (ALP) that are all present on the VTG molecule in high abundances), gonad-somatic index (GSI), condition factor (CF), analysis of covariance (ANCOVA) manipulated gonads, protein carbonyls (PC) and intersex. Although none of these biomarkers could be significantly correlated with the DDT contaminations, DDT was shown to induce a slight sub-organismal effect by slightly inducing the synthesis of ALP and Ca as well as reducing the gonad mass (shown by GSI and adjusted gonad mass biomarkers) and body condition. In contrast, the fish and macroinvertebrate communities showed no conclusive relationship with DDT contamination, using a variety of methodologies, including informal assessments, univariate diversity indices, multivariate statistics, abundance models, fish response assessment index (FRAI) as well as average score per taxon (ASPT) and Ephemeroptera, Plecoptera and Trichoptera (EPT) richness. In conclusion, it was shown that DDT concentrations within the Luvuvhu River only induced effects at the lower levels of complexity, which highlights the importance of the utilisation of biomarkers to measure more subtle long-term effects as compared to the usage of community level effects.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:2682
Date17 August 2012
CreatorsBrink, Kerry Anne.
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0016 seconds