A pressurized arch-shell structural component made of flexible material is considered. The component is inflated with high internal pressure. The behavior of similar types of structures, such as a pair of leaning pressurized arches and pressurized arch-supported membrane shelters, has been investigated in the past. More recently, several types of pressurized structures have been incorporated as part of the framework for a variety of structural systems. Particularly, the U.S. Army has been investigating the use of large lightweight and transportable pressurized arch-shell structures to be used as maintenance shelters for vehicles, helicopters, and airplanes.
The formulated equations using thin shell theory are applied to a pressurized arch-shell component. A numerical investigation based on the Rayleigh-Ritz method is utilized to determine the behavior of arch-shells under various types of loading. The types of loading include a uniformly distributed vertical load representing snow, a wind load, and a horizontal side load distributed along the arc length. Deflections, stress resultants, and moments at various locations are computed for two types of shapes: circular and non-circular arch-shells. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/35576 |
Date | 11 April 1998 |
Creators | Goh, Julian Kok Seng |
Contributors | Civil Engineering, Plaut, Raymond H., Kapania, Rakesh K., Holzer, Siegfried M. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | jkgoh.pdf |
Page generated in 0.0019 seconds