Return to search

Wireless Power Transfer Roadway Integration

Electric vehicles represent a major accomplishment in the energy and transportation industry. Unfortunately, they are restricted to a small travel range because of limited battery life. Successful integration of wireless power transfer (WPT) systems into the infrastructure would remove the range restrictions of EVs. To successfully integrate this technology, several requirements must be met. First, the embedment process cannot interfere with the electrical performance of the inductive power transfer (IPT) system. Second, the presence of the IPT system in the pavement structure cannot negatively affect the roadway’s lifespan.
Several systems were directly embedded in roadway materials. The electrical properties of the systems were monitored during the embedment process. Then modifications were made to the IPT systems to optimize the embedment process. These modifications were then applied to a full scale IPT system which is being used to dynamically charge EVs.
To test the structural performance of the systems, tensile stresses were applied to the pads to simulate traffic loading conditions. These tensile stresses were applied under cyclic loading conditions to simulate fatigue conditions found in roadways. The number of cycles, and stress at failure was recorded an analyzed. The electrical properties of the IPT pads was also measured and analyzed during the fatigue loading conditions.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7969
Date01 December 2017
CreatorsGardner, Trevor
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0019 seconds