Return to search

[en] 2D SPATIAL MODEL OF THE HUMAN GAIT SINGLE SUPPORT PHASE BASED ON PREDICTIVE DYNAMICS / [pt] MODELO ESPACIAL 2D DA FASE DE APOIO SIMPLES DO CAMINHAR HUMANO BASEADO EM DINÂMICA PREDITIVA

[pt] A simulação do movimento do corpo humano é uma ferramenta valiosa para diferentes campos, como robótica e biomecânica. Mesmo com o crescente número de pesquisas, ainda existem poucos grupos no Brasil que trabalham desenvolvendo modelos de movimento humano. Tal simulação tem sido um problema desafiador do ponto de vista de modelagem e computacional. Esta dissertação traz uma revisão bibliográfica de conceitos de dinâmica estrutural e dos principais determinantes da dinâmica do caminhar humano. Quatro modelos bidimensionais de crescente complexidade encontrados na literatura são inicialmente analisados para entender a influência dos diversos elementos e graus de liberdade na qualidade dos resultados obtidos. Antes de introduzir estes modelos, uma investigação de algumas variáveis cinemáticas, conhecidas como determinantes da caminhada, é realizada para a fase de apoio simples. O modelo mais simples considera um pêndulo invertido e, em seguida, articulações são adicionadas para simular o quadril, joelho, tornozelo/pé e, finalmente, todo o mecanismo de perna é substituído por uma mola. Os efeitos das adições sucessivas de graus de liberdade são analisados e os resultados são comparados com os resultados experimentais de Winter para torques e forças de reação. Com base nestas análises este trabalho propõe um modelo bidimensional do caminhar humano durante a fase de apoio simples (SSP) com sete graus de liberdade. As forças resultantes das ações musculares são representadas por torques em cada articulação. Todas as massas de segmentos corporais superiores são agrupadas. O modelo é baseado na dinâmica inversa, sendo os deslocamentos angulares interpolados por B-splines de 5º grau e a cinemática do corpo é calculada usando a formulação robótica de Denavit-Hartenberg (DH). As equações de movimento são obtidas com base em uma formulação Lagrangiana recursiva, em virtude de sua eficiência computacional. Um problema de otimização é estabelecido para obter os pontos de controle das B-splines, onde a função objetivo é definida pelo o esforço dinâmico. As restrições impostas ao movimento são de dois tipos: as restrições dependentes do tempo (limites de torque/ângulo e estabilidade dinâmica definida pelo critério do Zero Moment Point) e as restrições independentes do tempo (estado inicial e final). Os resultados do modelo são favoravelmente comparados com os dados experimentais de Winter, em particular as forças de reação do solo. / [en] The simulation of human body movement is a valuable tool for different fields such as robotics and biomechanics. Even with the growing number of researches, there are still few groups in Brazil that work on developing models of human movement. Such simulation has been a challenging problem from a modeling and computational point of view. This dissertation brings a bibliographical review of concepts of structural dynamics and the main determinants of the dynamics of human walking. Four two-dimensional models of increasing complexity found in the literature are initially analyzed to understand the influence of the various elements and degrees of freedom on the quality of the obtained results. Before introducing these models, an investigation of some kinematic variables, known as determinants of walking, is performed for the simple support phase. The simpler model considers an inverted pendulum, and then joints are added to simulate the hip, knee, ankle/foot, and finally the entire leg mechanism is replaced by a spring. The effects of successive additions of degrees of freedom are analyzed and the results are compared with Winter s experimental results for torques and reaction forces. Based on these analyzes, this work proposes a two-dimensional model of human walking during the simple support phase (SSP) with seven degrees of freedom. The forces resulting from muscular actions are represented by torques at each joint. All masses of upper body segments are grouped. The model is based on inverse dynamics, with angular displacements being interpolated by 5th degree B-splines and the body kinematics is calculated using the Denavit-Hartenberg (DH) robotic formulation. The equations of motion are obtained based on a recursive Lagrangian formulation, due to its computational efficiency. An optimization problem is established to obtain the B-splines control points, where the objective function is defined by the dynamic effort. The constraints imposed on movement are of two types: the time-dependent constraints (torque/angle limits and dynamic stability defined by the Zero Moment Point criterion) and the independent time constraints (initial and final state). The results of the model are favorably compared with Winter s experimental data, in08:22 23/07/2019 particular the ground reaction forces.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:42060
Date23 July 2019
CreatorsMANUEL LUCAS SAMPAIO DE OLIVEIRA
ContributorsPAULO BATISTA GONCALVES
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0024 seconds