In order to fully exploit robot motion capabilities in complex environments, robots need to reason about obstacles in a non-binary fashion. In this paper, we focus on the modeling and characterization of pliable materials such as tall vegetation. These materials are of interest because they are pervasive in the real world, requiring the robotic vehicle to determine when to traverse or avoid them. This paper develops and experimentally verifies two template models for vegetation-rich terrain. In addition, it presents and validates a methodology to generate predictions of the associated energetic cost incurred by tracked and skid-steered mobile robots when traversing a vegetation patches of variable density. Another class of terrains considered in this work are regions of shallow, dense fluids, such as a beach-head, stream banks, snow or mud. This work examines the behavior of a simulated SLIP runner operating in such a viscous medium. Simulation results show that intelligently retracting the leg during flight can have a profound effect on the maximum achievable velocity of the runner, the stability of the resulting gait, and the cost of transport of the runner. Results also show that trudging gaits, in which the leg is positioned behind the center of mass, can be favorable in certain situations in terms of energy consumption and forward velocity. / A Thesis submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science. / Spring Semester 2019. / April 16, 2019. / Fluid, Legged robot, Mobile robot, Rough Terrain, Running, Vegetation / Includes bibliographical references. / Jonathan Clark, Professor Directing Thesis; Christian Hubicki, Committee Member; Kourosh Shoele, Committee Member.
Identifer | oai:union.ndltd.org:fsu.edu/oai:fsu.digital.flvc.org:fsu_709713 |
Contributors | Alicea, Ryan Luis (author), Clark, Jonathan E. (Professor Directing Thesis), Hubicki, Christian (Committee Member), Shoele, Kourosh (Committee Member), Florida State University (degree granting institution), FAMU-FSU College of Engineering (degree granting college), Department of Mechanical Engineering (degree granting departmentdgg) |
Publisher | Florida State University |
Source Sets | Florida State University |
Language | English, English |
Detected Language | English |
Type | Text, text, master thesis |
Format | 1 online resource (65 pages), computer, application/pdf |
Page generated in 0.0015 seconds