In this thesis we investigate the use of GANs for texture enhancement. To achievethis, we have studied if synthetic satellite images generated by GANs will improvethe texture in satellite-based 3D maps. We investigate two GANs; SRGAN and pix2pix. SRGAN increases the pixelresolution of the satellite images by generating upsampled images from low resolutionimages. As for pip2pix, the GAN performs image-to-image translation bytranslating a source image to a target image, without changing the pixel resolution. We trained the GANs in two different approaches, named SAT-to-AER andSAT-to-AER-3D, where SAT, AER and AER-3D are different datasets provided bythe company Vricon. In the first approach, aerial images were used as groundtruth and in the second approach, rendered images from an aerial-based 3D mapwere used as ground truth. The procedure of enhancing the texture in a satellite-based 3D map was dividedin two steps; the generation of synthetic satellite images and the re-texturingof the 3D map. Synthetic satellite images generated by two SRGAN models andone pix2pix model were used for the re-texturing. The best results were presentedusing SRGAN in the SAT-to-AER approach, in where the re-textured 3Dmap had enhanced structures and an increased perceived quality. SRGAN alsopresented a good result in the SAT-to-AER-3D approach, where the re-textured3D map had changed color distribution and the road markers were easier to distinguishfrom the ground. The images generated by the pix2pix model presentedthe worst result. As for the SAT-to-AER approach, even though the syntheticsatellite images generated by pix2pix were somewhat enhanced and containedless noise, they had no significant impact in the re-texturing. In the SAT-to-AER-3D approach, none of the investigated models based on the pix2pix frameworkpresented any successful results. We concluded that GANs can be used as a texture enhancer using both aerialimages and images rendered from an aerial-based 3D map as ground truth. Theuse of GANs as a texture enhancer have great potential and have several interestingareas for future works.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-162446 |
Date | January 2019 |
Creators | Birgersson, Anna, Hellgren, Klara |
Publisher | Linköpings universitet, Datorseende, Linköpings universitet, Datorseende |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0106 seconds