Return to search

Design of an autonomous navigation system for a mobile robot

An autonomous navigational system for a mobile robot was developed based on a Laser-Range-Finder-based path planning and navigational algorithms. The system was enhanced by incorporating collision avoidance algorithms using data from a sonar sensor array, and further improved by establishing two virtual regions in front of the robot for obstacle detection and avoidance. Several virtual detector bands with varying dimensions were also added to the sides of the robot to check for rotational clearance safety and to determine the direction of rotation. The autonomous navigational system was tested extensively under indoor environment. Test results showed that the system performed satisfactorily in navigating the mobile robot in three structured mazes under indoor conditions. / An artificial landmark localization algorithm was also developed to continuously record the positions of the robot whilst it was moving. The algorithm was tested on a grid layout of 6 m x 6 m. The performance of the artificial landmark localization technique was compared with odometric and inertial measurements obtained using a dead-reckoning method and a gyroscope-corrected dead-reckoning method. The artificial landmark localization method resulted in much smaller root mean square error (0.033 m) of position estimates compared to the other two methods (0.175 m and 0.135 m respectively).

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.99565
Date January 2005
CreatorsPaul, André.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Bioresource Engineering.)
Rights© André Paul, 2005
Relationalephsysno: 002573091, proquestno: AAIMR28649, Theses scanned by UMI/ProQuest.

Page generated in 0.0021 seconds