Return to search

Learning and input selection of human strategy in controlling a single wheel robot.

by Wai-Kuen Yu. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 83-87). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Robot Concept --- p.1 / Chapter 1.2 --- Motivations --- p.3 / Chapter 1.3 --- Related Work --- p.5 / Chapter 1.4 --- Overview --- p.6 / Chapter 2 --- Single Wheel Robot --- p.8 / Chapter 2.1 --- Mathematical Model --- p.8 / Chapter 2.1.1 --- Coordinate Frame --- p.9 / Chapter 2.1.2 --- Equations of Motion --- p.10 / Chapter 2.1.3 --- Model Simplification --- p.12 / Chapter 2.2 --- Hardware Descriptions --- p.13 / Chapter 2.2.1 --- Actuators --- p.14 / Chapter 2.2.2 --- Sensors --- p.14 / Chapter 2.2.3 --- Communication Subsystem --- p.15 / Chapter 2.2.4 --- Computer Subsystem --- p.16 / Chapter 2.3 --- Software Descriptions --- p.16 / Chapter 2.3.1 --- Operating System --- p.17 / Chapter 2.3.2 --- Software Architecture --- p.18 / Chapter 3 --- Human-based Control --- p.21 / Chapter 3.1 --- Why Human-based Control --- p.21 / Chapter 3.2 --- Modeling Human Control Strategy --- p.22 / Chapter 3.2.1 --- Human Control Strategy --- p.22 / Chapter 3.2.2 --- Neural Network for Modeling --- p.23 / Chapter 3.2.3 --- Learning Procedure --- p.24 / Chapter 3.3 --- Task Descriptions --- p.28 / Chapter 3.4 --- Modeling HCS in Controlling the Robot --- p.29 / Chapter 3.4.1 --- Model Input and Output --- p.30 / Chapter 3.4.2 --- Human-based Controller --- p.31 / Chapter 3.5 --- Result and Discussion --- p.31 / Chapter 4 --- Input Selection --- p.38 / Chapter 4.1 --- Why Input Selection --- p.38 / Chapter 4.2 --- Model Validation --- p.39 / Chapter 4.2.1 --- Why Model Validation --- p.39 / Chapter 4.2.2 --- Root Mean Square Error Measure --- p.40 / Chapter 4.3 --- Experimental Setup --- p.40 / Chapter 4.4 --- Model-based Method --- p.41 / Chapter 4.4.1 --- Problem Definition --- p.41 / Chapter 4.4.2 --- Input Representation --- p.43 / Chapter 4.4.3 --- Sensitivity Analysis --- p.44 / Chapter 4.4.4 --- Experimental Result --- p.47 / Chapter 4.5 --- Model-free Method --- p.51 / Chapter 4.5.1 --- Problems Definition --- p.51 / Chapter 4.5.2 --- Factor Analysis --- p.54 / Chapter 4.5.3 --- Experimental Result --- p.63 / Chapter 4.6 --- Model-based Method versus Model-free Method --- p.66 / Chapter 5 --- Conclusion and Future Work --- p.71 / Chapter 5.1 --- Contributions --- p.71 / Chapter 5.2 --- Future Work --- p.72 / Chapter Appendix A --- Dynamic Model of the Robot --- p.74 / Chapter A.1 --- Kinematic Constraints: Holonomic and Nonholonomic --- p.74 / Chapter A.1.1 --- Coordinate Frame --- p.74 / Chapter A.2 --- Robot Dynamics --- p.76 / Chapter A.2.1 --- Single Wheel --- p.77 / Chapter A.2.2 --- Internal Mechanism and Spinning Flywheel --- p.77 / Chapter A.2.3 --- Lagrangians of the System --- p.78 / Chapter Appendix B --- Similarity Measure --- p.80 / Bibliography --- p.82

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_323234
Date January 2000
ContributorsYu, Wai-Kuen., Chinese University of Hong Kong Graduate School. Division of Mechanical and Automation Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 87 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0149 seconds