Return to search

Critérios robustos de seleção de modelos de regressão e identificação de pontos aberrantes / Robust model selection criteria in regression and outliers identification

A Regressão Robusta surge como uma alternativa ao ajuste por mínimos quadrados quando os erros são contaminados por pontos aberrantes ou existe alguma evidência de violação das suposições do modelo. Na regressão clássica existem critérios de seleção de modelos e medidas de diagnóstico que são muito conhecidos. O objetivo deste trabalho é apresentar os principais critérios robustos de seleção de modelos e medidas de detecção de pontos aberrantes, assim como analisar e comparar o desempenho destes de acordo com diferentes cenários para determinar quais deles se ajustam melhor a determinadas situações. Os critérios de validação cruzada usando simulações de Monte Carlo e o Critério de Informação Bayesiano são conhecidos por desenvolver-se de forma adequada na identificação de modelos. Na dissertação confirmou-se este fato e além disso, suas alternativas robustas também destacam-se neste aspecto. A análise de resíduos constitui uma forte ferramenta da análise diagnóstico de um modelo, no trabalho detectou-se que a análise clássica de resíduos sobre o ajuste do modelo de regressão linear robusta, assim como a análise das ponderações das observações, são medidas de detecção de pontos aberrantes eficientes. Foram aplicados os critérios e medidas analisados ao conjunto de dados obtido da Estação Meteorológica do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo para detectar quais variáveis meteorológicas influem na temperatura mínima diária durante o ano completo, e ajustou-se um modelo que permite identificar os dias associados à entrada de sistemas frontais. / Robust Regression arises as an alternative to least squares method when errors are contaminated by outliers points or there are some evidence of violation of model assumptions. In classical regression there are several criteria for model selection and diagnostic measures that are well known. The objective of this work is to present the main robust criteria of model selection and outliers detection measures, as well as to analyze and compare their performance according to different stages to determine which of them fit better in certain situations. The cross-validation criteria using Monte Carlo simulations and Beyesian Information Criterion are known to be adequately developed in model identification. This fact was confirmed, and in addition, its robust alternatives also stand out in this aspect. The residual analysis is a strong tool for model diagnostic analysis, in this work it was detected that the classic residual analysis on the robust linear model regression fit, as well as the analysis of the observations weights, are efficient measures of outliers detection points. The analyzed criteria and measures were applied to the data set obtained from the Meteorological Station of the Astronomy, Geophysics and Atmospheric Sciences Institute of São Paulo University to detect which meteorological variables influence the daily minimum temperature during the whole year, and was fitted a model that allows identify the days associated with the entry of frontal systems.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-05042019-165356
Date08 March 2019
CreatorsGuirado, Alia Garrudo
ContributorsElian, Silvia Nagib
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0023 seconds