In this study, the implementation of modern control techniques, that can be used both for the stable recovery of the aircraft from the undesired high angle of attack flight state (stall) and the agile maneuvering of the aircraft in various air combat or defense missions, are performed. In order to accomplish this task, the thrust vectoring control (TVC) actuation is blended with the conventional
aerodynamic controls. The controller design is based on the nonlinear dynamic inversion (NDI) control methodologies and the stability and robustness analyses are done by using robust performance (RP) analysis techniques. The control
architecture is designed to serve both for the recovery from the undesired stall condition (the stabilization controller) and to perform desired agile maneuvering (the attitude controller). The detailed modeling of the aircraft dynamics, aerodynamics, engines and thrust vectoring paddles, as well as the flight
environment of the aircraft and the on-board sensors is performed. Within the control loop the human pilot model is included and the design of a fly-by-wire controller is also investigated. The performance of the designed stabilization and attitude controllers are simulated using the custom built 6 DoF aircraft flight simulation tool. As for the stabilization controller, a forced deep-stall flight condition is generated and the aircraft is recovered to stable and pilot controllable
flight regimes from that undesired flight state. The performance of the attitude controller is investigated under various high angle of attack agile maneuvering conditions. Finally, the performances of the proposed controller schemes are discussed and the conclusions are made.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12608575/index.pdf |
Date | 01 July 2007 |
Creators | Atesoglu, Ozgur Mustafa |
Contributors | Ozgoren, Kemal Mustafa |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | Ph.D. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.002 seconds