Return to search

Robust estimation and testing : finite-sample properties and econometric applications

High breakdown point, bounded influence and high efficiency at the Gaussian model are desired properties of robust regression estimators. Robustness of validity, robustness of efficiency and high breakdown point size and power are the fundamental goals in robust testing. The objective of this dissertation is to examine the finite-sample properties of robust estimators and tests, and to find some useful applications for them. This is accomplished by extensive Monte Carlo experiments and other inference techniques in various contamination situations. In the linear regression model with an outlying regressor and deviations from the normal error distribution, robust estimators demonstrate noticeable advantages over the standard LS and maximum likelihood (ML) estimators. Our findings reveal that the finite-sample behavior of the robust estimators is very different from their asymptotic properties. The robust properties of estimators carry over to test statistics based on these estimators. The robust tests we proposed can achieve to the large extent the fundamental goals in robust testing. Economic applications on modelling the household consumption behavior and testing for (G)ARCH effects show that one can capture big gains from the appropriate utilization of the robust methods even at very simple models.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.36739
Date January 2000
CreatorsYou, Jiazhong, 1968-
ContributorsZinde-Walsh, Victoria (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageDoctor of Philosophy (Department of Economics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001763069, proquestno: NQ64701, Theses scanned by UMI/ProQuest.

Page generated in 0.0029 seconds