Return to search

A study on deformation of tunnels excavated in fractured rocks

La déformation due au fluage d'un massif rocheux autour d'un tunnel a été rencontrée fréquemment. Ce phénomène est évident où il y a des tunnels creusés dans la roche tendre, des masses rocheuses faible et fortement cisaillées, ou des massifs rocheux soumis à des contraintes in-situ élevées. La déformation due au fluage se produit fréquemment au moment d’excavation des tunnels longs où il y a des failles et des zones fracturées et cisaillées. Ce phénomène peut causer différents dommages sur des systèmes de soutènement en raison de la déformation excessive et des effondrements. La déformation excessive impose une ré-excavation de la section du tunnel, qui monte le coût supplémentaire, la durée de la réalisation du projet et le risque de la sécurité sur le projet. En plus, comme la stabilité de terrain est dans un état critique durant la ré-excavation, une petite négligence peut conduire à une grande caverne. Bien que la déformation de fluage est commune dans un massif rocheux à une faible résistance dans un tunnel très profond, mais ce phénomène a été observé dans des tunnels peu profonds. Une bonne compréhension des déformations causées par une excavation souterraine requiert la connaissance de l'interaction roche-support et l'interprétation des données de terrain. Auparavant, l’objet principal de la surveillance effectuée durant la construction du tunnel était des mesures de la pression au terrain imposé sur le revêtement du tunnel. Mais aujourd’hui, les méthodes modernes de construction de tunnel se concentrent sur la surveillance des déplacements pendant et après la construction. Afin de déterminer des déformations dans les tunnels, Panet et Sulem ont supposé que "Le tunnel a une section transversale circulaire et le milieu est homogène et isotrope, aussi le tunnel est suffisamment profond pour considérer que la distribution des contraintes est homogène". Mais dans le cas quasi réel, la distribution de la contrainte autour du tunnel est hétérogène et anisotrope. Dans cette étude, pour la modification des équations Panet et Sulem, certaines équations sont proposées en cas de matériau hétérogène et anisotrope pour généraliser le problème. La galerie de force motrice Seymareh a été considérée comme l’étude de cas. Celle-ci est une partie du conduit d’eau dans le projet de centrale électrique du barrage Seymareh. Ce projet est situé à l'ouest de l'Iran. Les données de surveillance de la galerie de force motrice sont collectées au moment de l’excavation du tunnel, et sont comparées avec les résultats de la modélisation numérique et de la solution analytique. Cette comparaison montre que les résultats des données expérimentales obtenues par la surveillance sont très proches des résultats de la solution analytique, mais il y a une différence entre les deux et la modélisation numérique. Il était prévisible, car l’effet d’autres activités comme l’excavation des tunnels verticaux n’est pas prise en compte dans l’analyse numérique et aussi dans la solution analytique. Il est évident que les autres activités comme l’excavation des tunnels verticaux et l'excavation du tunnel principal vers deux directions opposées, peuvent affecter sur les résultats de la surveillance. D'autre part, les données initiales utilisées dans l'analyse numérique et la solution analytique ne sont pas tout à fait exactes, car elles sont obtenues en tant que représentatives du massif rocheux de la région, mais pas pour une section particulière. Toutefois, le but de cette étude est le développement d'une solution analytique de la déformation dans les tunnels sur les conditions générales et la poursuite de cette étude pourra être plus développée. / The creep deformation of a rock mass around a tunnel has been encountered frequently. It is particularly common in tunnels excavated in soft rock, heavily sheared weak rock masses or rock masses subjected to high in-situ stresses. Creep deformation in fault and shear fractured zones are one of the frequently encountered difficulties in long tunnel construction, which tend to cause failure of supporting systems due to excessive deformation and cavern. Excessive deformation would necessitate re-mining of the tunnel cross section, thus imposing impacts such as extra cost, extended time schedule and safety risk on the project. Furthermore, as the ground stability is in critical condition during re-mining, the slightest negligence would lead to major cavern. Although creep deformation is common to extremely poor rock mass under high overburden in a tunnel alignment, but however this phenomenon is not limited to tunnels with high overburden. A good understanding of the deformations caused by an underground excavation requires simultaneously knowledge of the rock-support interaction and interpretation of field data. Formerly, the main purpose of the monitoring carried out during tunnel construction was to measure the ground pressures acting on the tunnel lining. Modern tunneling practice emphasizes the monitoring of the displacements occurring during and after the construction. Panet and Sulem for determining of deformations in tunnels have assumed that "The tunnel has a circular cross section and around the tunnel, the rock is homogeneous and isotropic and also the tunnel is deep enough to consider that the stress distribution is homogenous". But in almost real cases, the stresses distribution around the tunnel is not homogeneous and isotropic. In this study, for modification of the Panet and Sulem equations, some equations are proposed in case of nonhomogeneous and anisotropic for generalizing of the problem. Seymareh power tunnel which is considered as a case study is a part of the powerhouse waterways system of the Seymareh dam and hydroelectric power plant project. The project is located in west of Iran. The monitoring data of power tunnel which are collected during excavation of tunnel is compared with the results of numerical modelling and analytical solution results as well as. The results obtained from comparison show although the field data, which are collected through the monitoring, are very close to the analytical solution results (approximately), but there is a significant difference between both of them and numerical modelling results. It was predictable; because the influence of the other activities such as excavation of shaft and surge tank in the numerical analysis and also analytical solution are not considered. It is obvious that other activities such as excavation of shaft and surge tank and also excavation of mean tunnel from other direction which were under operation at the same time can effect on the results of monitoring. On the other hand, the initial data which are used in numerical analysis and analytical solution are not quite accurate; because they are extracted as a representative of the rock mass of region, not for a particular section. However the goal of this study is development of analytical solution of deformation in tunnels on general conditions and pursuit of the study could be leaded to more development in this field.

Identiferoai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/24016
Date19 April 2018
CreatorsKhoshboresh, Amir Rahim
ContributorsForiero, Adolfo
Source SetsUniversité Laval
LanguageEnglish
Detected LanguageFrench
Typemémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise
Formatxv, 155 p., application/pdf
CoverageIran
Rightshttp://purl.org/coar/access_right/c_abf2

Page generated in 0.0021 seconds