The Fully Encapsulated Resin Bolt (FERB) is widely utilised for strata control and ground support in civil and mining applications worldwide, with approximately 6 million installed per annum by the Australian coal mining industry. Independent studies have concluded that 30-35% of these rockbolts, which represents an annual expenditure of $40 million, are ineffective. The anchorage and failure mechanisms of FERB are yet to be quantified, and support systems are designed primarily from empirical rather than scientific methods. There are no standardised methods of assessing FERB components, installation techniques and support behaviour. The majority of research into FERB support systems remains commercial intellectual property, with little information released into the public domain. This thesis investigated several variables of FERB support systems, and also examined differences between field and laboratory pull-out test load distributions. This research was conducted in two phases, with Phase 1 seeking standardised methodology and repeatability in results, while Phase 2 further refined Phase 1 methods and extended the range of tests. The results in both phases were encouraging, with reasonable repeatability attained in all testing series. The findings included: ??? Annulus Thickness: There was little change in load capacity with small annulus thickness, however the maximum peak load (MPL) significantly reduced once annulus thickness exceeded 4mm ??? Resin Installation Spin Time: Underspinning of cartridge resin was found to have an insignificant effect on rockbolt load/deformation characteristics. Overspinning, however, led to a dramatic reduction in anchorage performance with a lessening in both MPL and stiffness ??? Rockbolt Load Transfer: The magnitude of an applied load reduced to zero along the length of the rockbolt, being greatest nearest the rock free surface (the point of load application). An exponential reduction was found when tested in the manner of laboratory tests, with the loading jack reacting against the free surface. This reduction was linear when the load was applied as in the field, with no load placed on the free surface This basic investigation into FERB support systems has validated many empirical understandings of rockbolts, while highlighting the need for further testing into several key areas.
Identifer | oai:union.ndltd.org:ADTP/258493 |
Date | January 2003 |
Creators | Weckert, Steven, Mining Engineering, Faculty of Engineering, UNSW |
Publisher | Awarded by:University of New South Wales. School of Mining Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Steven Weckert, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0017 seconds