Return to search

A laboratory assessment of flow characteristics and permeability of fractures in rock

Intact and fractured rock samples were studied in the laboratory in order to understand more fully the mechanism of closure of fractures subjected to high confining stresses and the resultant effect on specimen permeability. Confining stresses applied to the specimens ranged from 3.0 to 20.0 MPa, and the closure of fractures was observed by monitoring the change in the hydraulic conductivity of the specimens. Test results suggest that some resealing may occur due to crushing and realignment of mineral grains along a fracture surface. The closure of fractures is dependent upon the strength of the rock mass, the physical nature of the fracture, and the fluid pressure present in the fracture. Fracture closure is highly time dependent, and a number of nonlinear pressure flow relationships have been identified. These deviations are thought to represent two fundamentally different processes, the most important of which are turbulence in the flow and fracture expansion.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/276629
Date January 1987
CreatorsRyan, Thomas Michael, 1963-
ContributorsFarmer, Ian
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0015 seconds