Boundary conditions in the roll gap play an important role in modelling of rolling processes. In the roll gap we can observe the following: changes of rolling pressure, changes of relative velocity, influences of oxides and lubrication, etc. When taking into account all conditions mentioned above the determination of the boundary conditions is not trivial and extensive measurements are necessary. Therefore, this thesis is dealing with design of temperature and force sensors specified for the determination of friction coefficient and heat transfer coefficient in contact. The temperature sensor with an installed thermocouple measures subsurface temperature for a given depth; and then the inverse heat conduction task is used to compute temperature and heat flux on the surface. Several temperature sensors were designed and used for measuring in pilot mill and industrial rolling mill as well. The thermal responses of different sensors were compared in the numerical simulations. The inverse calculations were tested for various rolling conditions. A durability of the sensors was also studied in industrial rolling conditions. The contact stresses in the roll gap were measured by a pin, which was in direct contact with the rolled material. The forces on the top of the pin were measured by a three-axes piezoelectric force transducer and recalculated to the contact stress and friction coefficient. The sensor was implemented in a work roll and tested when rolling aluminium and steel slab for different rolling conditions. The results were compared with the integrative force sensor ROLLSURF.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:255769 |
Date | January 2016 |
Creators | Luks, Tomáš |
Contributors | Pernis,, Rudolf, Hajduk, Daniel, Horský, Jaroslav |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0017 seconds