Thesis (M. Agric. (Plant Protection)) -- University of Limpopo, 2019 / Plant extracts exhibited broad spectrum of activities against root-knot (Meloidogyne
species) nematodes and had long been considered as an attractive alternative due to
their being biodegradable and posing limited risk hazards to the environment, animal
and human health. Additionally, the materials had been dubbed as being of low-input
costs and had been viewed as being easy to apply in agricultural systems. The
objective of the current study was to investigate the efficacy of paint-brush flower
(Kleinia longiflora) either as fermented or granular formulations on suppression of M.
javanica and their related effects on growth of tomato (Solanum lycopersicum) plants
under field and greenhouse conditions. Fermented crude extracts were applied at 0,
2, 4, 8, 16, 32 and 64%, whereas granular materials were applied at 0, 2, 4, 6, 8, 10
and 12 g. Regardless of the product, the treatments were arranged in randomised
complete block design (RCBD), with 12 replications. Kleinia longiflora plants were
collected from the wild, chopped into pieces, oven-dried at 52⁰C and fermented in
effective microorganisms (EM) for 14 days, whereas the remained were retained for
use as granular formulation. Tomato seedlings cv. ꞌFloradadeꞌ were used as test plants
inoculated with 2500 eggs and second-stage juveniles (J2) of M. javanica. At 56 days
after the treatments, nematode and plant variables were collected, prepared using
appropriate methodologies and subjected to analysis of variance using Statistix 10.0
software to generate means. Plant variables were subjected to the Curve-fitting
Allelochemical Response Data (CARD) computer-based model to generate
appropriate biological indices. Nematode and mineral elements variable means were
subjected to lines of the best fit. Findings showed second-stage juveniles (J2) in roots,
J2 in soil, eggs and Pf under increasing concentration were highly significant and
exhibited negative quadratic relationship. The model explained the associations by 82,
xvii
81, 74 and 76%, respectively. In granular formulation, the product had no significant
effects on nematode population densities. The fermented crude extracts significantly
affected and exhibited positive quadratic relations for dry fruit mass, chlorophyll
content, dry shoot mass, number of flowers, plant height, number of fruit and stem
diameter of tomato plants. The model explained the relationship by 97, 94, 95, 96, 94,
97 and 96%, respectively. In contrast, in granular formulation, the product had
significant effects and positive exhibited quadratic relations on Chlorophyll content
under field and greenhouse, plant height, dry root mass and dry shoot mass. The
model explained the relationships by 52, 45, 56, 47 and 59%, respectively. Plant
variables and increasing concentration of the products exhibited density-dependent
growth patterns for both formulations, with overall sensitivity (∑k) values of 1 and 11,
respectively. In fermented liquid and granular formulations, the Mean Concentration
Stimulation Point (MCSP) values were derived at 1.97% and 2.84 g, respectively. The
increasing concentration of fermented K. longiflora also had significant effects and
exhibited negative quadratic relations on the accumulation of K, Na and Zn in leaf
tissues of tomato plants. The model explained the associations with 87, 94 and 94%,
respectively. In conclusion, the findings in the current study suggested that the
nematicidal chemicals in K. longiflora could not be released through irrigation water
but could be released into solution through microbial degradation. Also, at low
concentration suitable for use without inducing phytotoxicity, the products in either
formulation could improve the accumulation of certain nutrients in leaf tissues of
tomato plants.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:ul/oai:ulspace.ul.ac.za:10386/3074 |
Date | January 2019 |
Creators | Moremi, Makgoka Given |
Contributors | Shadung, K. G., Mashela, P. W. |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis |
Format | xvii, 67 leaves |
Relation |
Page generated in 0.0021 seconds