We prove the positivity of Lusztig's q-analogue of weight multiplicity in a purely combinatorial way for rank 2 Lie algebras. Each summand in the polynomial can be interpreted as a linear combination of positive roots. We prove that all negative coefficients are cancelled in the polynomial. Further, the analysis of the root systems allows us to state formulae for every coefficient in Lusztig's q-analogue for rank 2 Lie algebras. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/11071 |
Date | 09 December 2003 |
Creators | Gillespie, Jason Michael |
Contributors | Mathematics, Shimozono, Mark M., Green, Edward L., Parry, Charles J., Brown, Ezra A., Haskell, Peter E. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Kostkarevised.pdf |
Page generated in 0.0018 seconds