Return to search

A Combinatorial Proof of the Positivity of the Lusztig q-Analogue of Weight Multiplicity for Rank 2 Lie Algebras

We prove the positivity of Lusztig's q-analogue of weight multiplicity in a purely combinatorial way for rank 2 Lie algebras. Each summand in the polynomial can be interpreted as a linear combination of positive roots. We prove that all negative coefficients are cancelled in the polynomial. Further, the analysis of the root systems allows us to state formulae for every coefficient in Lusztig's q-analogue for rank 2 Lie algebras. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/11071
Date09 December 2003
CreatorsGillespie, Jason Michael
ContributorsMathematics, Shimozono, Mark M., Green, Edward L., Parry, Charles J., Brown, Ezra A., Haskell, Peter E.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationKostkarevised.pdf

Page generated in 0.0018 seconds