Return to search

Ras Opposite, the Drosophila Homologue of Munc18-1, is Important for Motor Axon Maintenance.

Amyotrophic Lateral Sclerosis (ALS) is a fatal disease characterized by the progressive degeneration of motor neurons. Although there has been some progress in the identification of genes linked to inherited cases of ALS, the etiology of this disease remains largely unknown. Clinical progression of motor neuron diseases is associated with the degeneration of the axon preceding cell death. Elucidating novel mechanisms important for motor axon maintenance will help gain greater insight into disease pathogenesis. Here, I report that mutations in ras-opposite (rop), which encodes the Drosophila homologue of mammalian Sec1/Munc18, cause progressive degeneration of motor axons while sensory axons are largely unaffected. While mutations in mammalian munc18-1 have been linked to degeneration of the spinal cord, the mechanisms by which this occurs are unknown. Using Drosophila, I found that RNAi-induced knockdown of rop leads to severe motor deficits in adult flies. In addition, I discovered that motor axon degeneration in rop mutants could be delayed by overexpression of the neuronal maintenance factor Nmnat. Interestingly, I found that Rop is localized with Nmnat at the neuromuscular junction and that Rop physically interacts with Nmnat in vivo. These data indicate a novel role for Rop in motor axon maintenance and provide insight into the pathogenesis of neurodegenerative diseases targeting motor neurons, such as ALS.

Identiferoai:union.ndltd.org:UMIAMI/oai:scholarlyrepository.miami.edu:oa_theses-1241
Date03 May 2011
CreatorsCarlson, Nicole E
PublisherScholarly Repository
Source SetsUniversity of Miami
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceOpen Access Theses

Page generated in 0.0016 seconds