Return to search

Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas / Entaglement swapping and controlled teleportation in the context of photonic Faraday rotations

Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-05T19:52:53Z
No. of bitstreams: 2
Bastos, Wellison Peixoto - 2011.pdf: 686060 bytes, checksum: ca3480442dd033c3262ee9c2c3216240 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2014-09-05T19:52:53Z (GMT). No. of bitstreams: 2
Bastos, Wellison Peixoto - 2011.pdf: 686060 bytes, checksum: ca3480442dd033c3262ee9c2c3216240 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2011-03-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Taking advantage of the Faraday rotations that occur in a photonic cristal placed
in an optical cavity with low quality factor, we proposed two schemes to obtain
the swapping of entanglement of atomic states, useful in quantum communication
and quantum computation. They employ three-level atoms in a -configuration, a
linearly polarized photon source, a single detector, and a quarter wave plate. Three
(four) cavities are used in the first (second) scheme. An additional scheme was also
proposed to obtain controlled teleportation of superposition states, partial controlled
teleportation of entangled states and controlled teleportation of entanglement.
In all schemes we have included the imperfections that affect the system, such as
transmission and coupling of photons in optical components, the fraction of photons
with a desired polarization, the quantum efficiency of single photon detection, the
effective solid angle where the photon are collected, and the rate of emitted photons
by the source. Under these realistic conditions we estimate the success probability
of each proccess, including the time spent for its realization. / Aproveitando as rotações de Faraday que ocorrem em um cristal fotônico colocado
em uma cavidade óptica com baixo fator de qualidade, propusemos dois esquemas
para obter a troca de emaranhamento de estados atômicos, útil em comunicação
quântica e computação quântica. Eles empregam átomos de três níveis em uma
configuração, uma fonte de fótons com polarização linear, um único detector,
e uma placa de quarto de onda. Três (quatro) cavidades são usadas no primeiro
(segundo) esquema. Um método adicional foi também proposto para obter teletransporte
controlado de estados de superposição, teletransporte parcial controlado
de estados emaranhados e teletransporte controlado de estados emaranhados. Em
todos os esquemas incluímos as imperfeições que afetam o sistema, tais como a
transmissão e acoplamento de fótons em componentes ópticos, a fração de fótons
com uma polarização desejada, a eficiência quântica da detecção de um único fóton,
o ângulo sólido efetivo em que o fótons são coletados e a taxa de fótons emitidos
pela fonte. Sob estas condições realistas, estimamos a probabilidade de sucesso de
cada processo, incluindo o tempo gasto para sua realização.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.bc.ufg.br:tde/3027
Date04 March 2011
CreatorsBastos, Wellison Peixoto
ContributorsBaseia, Basilio, Cardoso, Wesley Bueno, Baseia, Basilio, Cardoso, Wesley Bueno, Mizrahi, Salomon Sylvain, Fonseca, Tertius Lima da
PublisherUniversidade Federal de Goiás, Programa de Pós-graduação em Fisica (IF), UFG, Brasil, Instituto de Física - IF (RG)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFG, instname:Universidade Federal de Goiás, instacron:UFG
Rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/, info:eu-repo/semantics/openAccess
Relation3162138865744262028, 600, 600, 600, 600, -4029658853652049306, 4652787352762697830, 2075167498588264571, [1] J. M. Raimond, M. Brune, S. Haroche, Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 53, 565 (2001). [2] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935). [3] N. Bohr, Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, Phys. Rev. 48, 696 (1935). [4] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics (Long Island City, N.Y.) 1, 195 (1964). [5] A. Zeilinger, Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, S288 (1998). [6] A. Aspect, Bell’s inequality test: more ideal than ever, Nature (London) 398, 189 (1999). [7] D. M. Greenberger, M. Horne, A. Zeilinger, Going beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, The Netherlands, 1989), pg. a 73-76. [8] A. Ekert, Quantum Cryptography Based on Bell’s Theorem, Phys. Rev. Lett. 67, 661 (1991). [9] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres,W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels, Phys. Rev. Lett. 70, 1895 (1993). [10] P. W. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society) (1994). [11] A. Ekert, R. Josza, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68, 733 (1996). [12] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack, Phys. Rev. Lett. 79, 325 (1997). [13] Y. H. Shih, C. O. Alley, New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of light Quanta Produced by Optical Parametric Down Conversion, Phys. Rev. Lett, 61, 26 (1988). [14] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation, Nature 390, 575 (1997). [15] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 80, 1121 (1998). [16] A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik,Unconditional Quantum Teleportation, Science 282, 706 (1998). [17] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C.Monroe, D. J.Wineland, Deterministic Entanglement of Two Trapped Ions, Phys. Rev. Lett. 81, 3631 (1998). [18] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland, Demonstration of a Fundamental Quantum Logic Gate, Phys. Rev. Lett. 75, 4714 (1995). [19] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette,W.M. Itano, D. J.Wienland, C.Monroe, Experimental entanglement of four particles, Nature 404, 256 (2000). [20] R. J. Thompson, G. Rempe, H. J. Kimble, Observation of Normal-Mode Splitting for an Atom in a Optical Cavity, Phys. Rev. Lett. 68, 1132 (1992). [21] P. M¨unstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, G. Rempe, Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity, Phys. Rev. Lett. 82, 3791 (1999). [22] C. J. Hood, T.W. Lynn, A. C. Doherty, A. S. Parkins, H. J. Kimble, The Atom- Cavity Microscope: Single Atoms Bound in Orbit by Single Photons, Science 287, 1447 (2000). [23] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble, Theory of Photon Blockade by an Optical Cavity with One Trapped Atom, Nature 436, 87 (2005). [24] T.Wilk, S. C.Webster, A. Kuhn, G. Rempe, Single-Atom Single-Photon Quantum Interface, Science 317, 488 (2007). [25] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, S. Haroche, Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED, Phys. Rev. Lett. 83, 5166 (1999). [26] M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continous generation of single photons with controlled waveform in an ion-trap cavity system, Nature 431, 1075 (2004). [27] M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, A Single-Photon Server with Just One Atom, Nat. Phys. 3, 253 (2007). [28] J.-H. An, M. Feng, C. H. Oh, Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities, Phys. Rev. A 79, 032303 (2009). [29] J.-J. Chen, J.-H. An, M. Feng, G. Liu, Teleportation of an arbitrary multipartite state via photonic Faraday rotation, J. Phys. B: At. Mol. Opt. Phys. 43, 095505 (2010). [30] B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, H. J. Kimble, A Photon Turnstile Dynamically Regulated by One Atom , Science 319, 1062 (2008). [31] H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, N. Gisin, Long-distance entanglement swapping with photons from separated sources, Phys. Rev. A 71, 050302 (2005). [32] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, C. Monroe, Quantum Teleportation Between Distant Matter Qubits, Science 323, 486 (2009). [33] W. Tittel, H. Zbinden, N. Gisin, Experimental demonstration of quantum secret sharing, Phys. Rev. A 63, 042301 (2001). [34] C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. ˙ Zukowski, H. Weinfurter Experimental Single Qubit Quantum Secret Sharing, Phys. Rev. Lett. 95, 230505 (2005). [35] W. P. Bastos, W. B. Cardoso, A. T. Avelar, B. Baseia, Entanglement swapping of atomic states through the photonic Faraday rotation, arXiv:1005.1189v1 2010. (Aceito no Quant. Inf. Process.) [36] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200 (2004). [37] A. Blais, R. S. Huang, A.Wallraff, S. Girvin, R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69, 062320 (2004). [38] S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, New York, 2006). [39] L.-M. Duan, H. J. Kimble, Scalable Photonic Quantum Computation through Cavity-Assisted Interactions, Phys. Rev. Lett. 92, 127902 (2004). [40] X.-M. Lin, Z.-W. Zhou, M.-Y. Ye, Y.-F. Xiao, G.-C. Guo, One-step implementation of a multiqubit controlled-phase-flip gate, Phys. Rev. A 73, 012323 (2006). [41] H. Goto, K. Ichimura, Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting, Phys. Rev. A 72, 054301 (2005). [42] Q. Chen, M. Chen, Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process, Phys. Rev. A 79, 064304 (2009). [43] C. J. Pethick, H. Smith, Bose?Einstein Condensation in Dilute Gases (Cambridge University Press, 2002). [44] D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994). [45] S. S.Mizrahi, V. V. Dodonov, Creating quanta with an ’annihilation’ operator, J. Phys. A: Math. Gen. 35 (2002) 8847. [46] H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer-Verlag, Berlin, 2008). [47] E. Courtens, Giant Faraday Rotations in self-induced transparency, Phys. Rev. Lett. 21, 3 (1968). [48] G. Labeyrie, C. Miniatura, R. Kaiser, Large Faraday rotation of resonant light in a cold atomic cloud, Phys. Rev. A 64, 033402 (2001). [49] B. Julsgaard, A. Kozhekin, E. S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature 413, 400 (2001). [50] M. ˙ Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, Event-ready-detectors Bell experiment via entanglement swapping, Phys. Rev. Lett. 71, 4287 (1993). [51] S. J. Freedman, J. F. Clauser, Experimental Test of Local Hidden-Variable Theories, Phys. Rev. Lett. 28, 938 (1972). [52] J. G. Rarity, P. R. Tapster, Experimental violation of Bell’s inequality based on phase and momentum, Phys. Rev. Lett. 64, 2495 (1990). [53] E. Hagley, X.Maˆıtre, G. Nogues, C.Wunderlich, M. Brune, J.M. Raimond, S. Haroche, Generation of Einstein-Podolsky-Rosen Pairs of Atoms, Phys. Rev. Lett. 79, 1 (1997). [54] T. Jennewein, G. Weihs, J. W. Pan, A. Zeilinger. Experimental nonlocality proof of quantum teleportation and entanglement swapping, Phys. Rev. Lett. 88, 017903 (2002). [55] N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, D. G. Cory, Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing, Phys. Rev. A 68, 032305 (2003). [56] X.-J. Jia, X.-L. Su, Q. Pan, J.-R. Gao, C.-D. Xie, K.-C. Peng, Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables, Phys. Rev. Lett. 93, 250503 (2004). [57] D. Gottesman, I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations., Nature 402, 390 (1999). [58] J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network., Phys. Rev. Lett. 78, 3221 (1997). [59] L. Vaidman, Teleportation of quantum states, Phys. Rev. A 49, 2 (1994). [60] L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, S. Haroche, Teleportation of an atomic state between two cavities using nonlocal microwave fields, Phys. Rev. A 50, R895 (1994). [61] J. I. Cirac, A. S. Parkins, Schemes for atomic-state teleportation, Phys. Rev. A 50, R4441 (1994). [62] S. L. Braunstein, A. Mann, Measurement of the Bell operator and quantum teleportation, Phys. Rev. A 51, R1727 (1995). [63] M. H. Y.Moussa, Teleportation of a cavity-radiation-field state: An alternative scheme, Phys. Rev. A 54, 4661 (1996). [64] M. H. Y. Moussa, Teleportation with identity interchange of quantum states, Phys. Rev. A 55, R3287 (1997). [65] S.-B. Zheng, Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement, Phys. Rev. A 69, 064302 (2004). [66] W. B. Cardoso, A. T. Avelar, B. Baseia, N. G. de Almeida, Teleportation of entangled states without Bell-state measurement, Phys. Rev. A 72, 045802 (2005). [67] M. Riebe, H. Haffner, C. F. Roos,W. Hansel, J. Benhelm, G. P. T. Lancaster, T. W. Korber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt, Deterministic quantum teleportation with atoms, Nature 429, 734 (2004). [68] M. A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation by nuclear magnetic resonance, Nature 396, 52 (1998). [69] A. Karlsson, M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998). [70] M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59, 1829 (1999). [71] C.-P. Yang, S.-I. Chu, S. Han, Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , Phys. Rev. A 70, 022329 (2004). [72] W. B. Cardoso, N. G. de Almeida, Controlled partial teleportation of entangled states, Phys. Scr. 80, 045001 (2009); W. B. Cardoso, N. G. de Almeida, Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity, Chin. Phys. Lett. 25, 2488 (2008). [73] S. Gaertner, C. Kurtsiefer, M. Bourennane, H. Weinfurter, Experimental Demonstration of Four-Party Quantum Secret Sharing, Phys. Rev. A 98, 20503 (2007).

Page generated in 0.0044 seconds