O conceito de número de rotação originalmente definido para homeomorfismos do círculo S1 que preservam orientação pode ser generalizado para todo homeomorfismo h do anel fechado S1×[0; 1] isotópico à identidade, onde obtemos o chamado conjunto de rotação. Neste trabalho estudamos o caso em que o conjunto de rotação de h se reduz somente a um número irracional ? (neste caso dizemos que h é uma pseudo-rotação irracional), obtendo que para qualquer inteiro positivo n, existe um arco simples ? que une uma componente do bordo do anel à outra, de tal modo que ? é disjunto de seus n primeiros iterados por h: Este resultado é um análogo do Teorema de Kwapisz concernente a difeomorfismos do toro bidimensional [14]. Posteriormente e utilizando o primeiro resultado, provamos que a rotação rígida de ângulo pode ser aproximada por um homeomorfismo conjugado a h. Finalmente, mostramos que ser uma pseudo-rotação irracional é uma propriedade necessária para que um homeomorfismo tenha a propriedade de interseção de curvas e não tenha pontos periódicos. / The concept of rotation number originally defined for orientation preserving homeomorphisms of the circle S1 can be generalized for any homeomorphism h of closed annulus S1×[0; 1] which is isotopic to the identity. In this setting we obtain the so called rotation set. In this work we study the case when the rotation set of h is reduced to a single irrational number ? (we say that h is an irrational pseudo-rotation), and we prove that for any positive integer n, there exists a simple arc ? joining one of the boundary components of annulus to the other, such that ? is disjoint from its n first iterates under h: This result is an analogue of a theorem of Kwapisz dealing with diffeomorphisms of the two-torus [14]. Subsequently and applying the first result, we prove that a rigid rotation of angle can be approximated by a homeomorphism that is conjugate to h: Finally, we prove that to be an irrational pseudo-rotation is a necessary property in order that a homeomorphism has the curves intersection property and no periodic points.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19092008-130329 |
Date | 29 August 2008 |
Creators | Francisco Javier Tipán Salazar |
Contributors | Salvador Addas Zanata, Fernando Figueiredo de Oliveira Filho, Fabio Armando Tal |
Publisher | Universidade de São Paulo, Matemática Aplicada, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds