The McTronX Research group at the Potchefstroom campus of the North-West University, aims to establish a knowledge base on active magnetic bearing (AMB) systems. Up to date, the group has established a firm knowledge base on various topics related to AMB systems. A recent focus was the design and development of a high speed AMB supported rotor system called the rotor delevitation system (RDS) to analyse rotor drops. During the testing phase of the RDS, the machine exhibited vibrations, of which the origins were unknown.
The research presented in this dissertation sets out to characterize the vibrations of the RDS, which is the group’s first attempt to fulfil the need for characterizing vibrations in an AMB supported rotor. Emphasis is placed on characterizing the natural response of the RDS rotor, stator and integrated system. The research project is defined in terms of four main objectives: rotor and stator characterization, modelling, system characterization and rotor dynamic diagnostics.
A comprehensive literature study introduces the fundamental concepts regarding vibrations of single and multiple degree of freedom systems. These concepts include; natural frequencies, damping, machine vibrations, rotor dynamics and modelling techniques. These modelling techniques are introduced to verify the experimental methodology used to determine the natural frequencies. A critical overview of the literature contextualises the theory with the research investigation.
For the RDS rotor and stator characterization, a modal analysis process also known as the “bump test” is implemented in order to validate the bending natural frequencies of the rotor and stator. A simulation model of the RDS is constructed in the finite element (FE) package DyRoBeS®. The model is verified with a numerical and an analytical model and validated with the measured bending natural frequencies of the RDS rotor. For the system characterization, a number of modal analysis processes are implemented, which validates the rigid body natural frequencies of the RDS. These frequencies are also used to validate the FE simulation. The origins of the synchronous vibration harmonics are verified by formulating and evaluating hypotheses according to different modal analysis processes.
From the RDS rotor modal analysis it was identified that a bending natural frequency of the rotor is situated at approximately 443.33 Hz. This was verified using the FE simulation model. During the system modal analyses, it was identified that only one rigid body natural frequency, situated at approximately 62 Hz, is excited. This frequency increases with the differential gain control parameter of the system up to approximately 140 Hz. After evaluating two hypotheses regarding the origins of the synchronous vibrations harmonics, it was verified that non-circularity of the rotor at the measuring positions is the cause.
Overall the objectives of the study were addressed by characterizing the natural frequencies of the rotor, stator and RDS system. This include the mode forms of the rigid body and bending natural frequencies of the system. The results of the verification and validation methods correlated, which imply these methods are reliable to identify the origins of vibrations in rotor-bearing systems.
The differential gain control parameter of the AMBs control the equivalent damping in the RDS. An increase in this parameter should lead to a decrease in amplitude and frequency of the maximum vibration, and vice versa. However, it was noted that an increase in this parameter caused a linear increase in the rigid body natural frequency. The literature indicates that this effect can only be caused by an increase in system stiffness. It is therefore recommended to evaluate the stiffness of the system as a function of the differential gain control parameter. / Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2012.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:nwu/oai:dspace.nwu.ac.za:10394/7029 |
Date | January 2011 |
Creators | Bean, Jaco |
Publisher | North-West University |
Source Sets | South African National ETD Portal |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds