Return to search

Aerodynamic shape optimization via control theory of helicopter rotor blades using a non-linear frequency domain approach

This study presents a discrete adjoint-based aerodynamic optimization algorithm for helicopter rotor blades in hover and forward flight using a Non-Linear Frequency Domain approach. The goal is to introduce a Mach number variation into the Non-Linear Frequency Domain (NLFD) method and implement a novel approach to present a time-varying cost function through a multi-objective adjoint boundary condition. The research presents the complete formulation of the time dependent optimal design problem. The approach is firstly demonstrated for the redesign of a NACA 0007 and a NACA 23012 helicopter rotor blade section in forward flight. A three-dimensional inviscid Aerodynamic Shape Optimization (ASO) algorithm is then employed to validate and redesign the Caradonna and Tung experimental blade. The results in determining the optimum aerodynamic configurations require an objective function which minimizes the inviscid torque coefficient and maintains the desired thrust level at transonic conditions.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112586
Date January 2008
CreatorsTatossian, Charles A.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mechanical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002763473, proquestno: AAIMR51477, Theses scanned by UMI/ProQuest.

Page generated in 0.002 seconds