Return to search

Classification Models in Clinical Decision Making

In this dissertation, we present a collection of manuscripts describing the development of prognostic models designed to assist clinical decision making. This work is motivated by limitations of commonly used techniques to produce accessible prognostic models with easily interpretable and clinically credible results. Such limitations hinder prognostic model widespread utilization in medical practice.
Our methodology is based on Rough Set Theory (RST) as a mathematical tool for clinical data anal- ysis. We focus on developing rule-based prognostic models for end-of life care decision making in an effort to improve the hospice referral process. The development of the prognostic models is demonstrated using a retrospective data set of 9,103 terminally ill patients containing physiological characteristics, diagnostic information and neurological function values.
We develop four RST-based prognostic models and compare them with commonly used classification techniques including logistic regression, support vector machines, random forest and decision trees in terms of characteristics related to clinical credibility such as accessibility and accuracy. RST based models show comparable accuracy with other methodologies while providing accessible models with a structure that facilitates clinical interpretation. They offer both more insight into the model process and more opportunity for the model to incorporate personal information of those making and being affected by the decision.

Identiferoai:union.ndltd.org:USF/oai:scholarcommons.usf.edu:etd-6091
Date01 January 2013
CreatorsGil-Herrera, Eleazar
PublisherScholar Commons
Source SetsUniversity of South Flordia
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceGraduate Theses and Dissertations
Rightsdefault

Page generated in 0.0027 seconds