Return to search

Investigating the effects of three herbicides - Kamba, 2,4-D and Roundup on Salmonella enteric serovar Typhimurium growth and antibiotic tolerance phenotypes

Herbicides are a common tool in weed control. With the introduction of genetically modified herbicide-tolerant crops, there has been a dramatic increase in the use of particular herbicides. Herbicides contaminate the environment and food and feed and can come into contact with non-target organisms, especially bacteria. Salmonella enteric serovar Typhimurium, which is a human and animal pathogen, was chosen to investigate if the commercial formulations of three herbicides – Kamba, 2,4-D and Roundup are toxic to bacteria and whether sub-lethal concentrations cause a response to antibiotics. In addition, earlier work demonstrating an effect of salicylic acid on antibiotic response was reconfirmed in this study.
The herbicides were toxic to S. typhimurium at concentrations above the manufacturers recommended application rates. A key finding of this study was that when S. typhimurium was grown in sub-lethal concentrations of the herbicides, it demonstrated a change in its susceptibility to various antibiotics. Kamba and 2,4-D caused increased tolerance of chloramphenicol, tetracycline, ampicillin and ciprofloxacin and increased sensitivity to kanamycin. Exposure to Roundup caused increased sensitivity to chloramphenicol and tetracycline and increased tolerance towards kanamycin and ciprofloxacin. Roundup had no measureable affect on ampicillin susceptibility.
The minimum concentrations of herbicides that induced an antibiotic response were within the recommended application rates. Furthermore, the minimum 2,4-D concentration that induced tetracycline, chloramphenicol and ampicillin tolerance was at or below the maximum residue limits set for food and feed commodities. Simultaneous exposure to an herbicide and an antibiotic was necessary for the induction of antibiotic tolerance. In addition, the effect of the herbicide on the antibiotic response was faster than the lethal effect of the antibiotics. Kamba induced chloramphenicol, tetracycline, ampicillin and ciprofloxacin tolerance was maintained in the absence of Kamba once tolerance was induced by simultaneous exposure to Kamba and antibiotic.
The emergence of antibiotic tolerance is an important health issue that may compromise treatment of serious bacterial infections. The widespread use of herbicides in agricultural, urban and domestic settings increases the number of bacteria that are exposed to herbicides. The tolerance induced by the herbicides may increase the frequency of antibiotic tolerant strains, increase the chance of co-exposure to antibiotics, and increase the potential for failure to treat bacterial infections as a result.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/10284
Date January 2014
CreatorsMarjoshi, Delphine
PublisherUniversity of Canterbury. School of Biological Sciences
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Delphine Marjoshi, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0035 seconds