Return to search

Analytical Layer Planning for Nanometer VLSI Designs

In this thesis, we proposed an intermediate sub-process between placement and routing stage in physical design. The algorithm is for generating layer guidance for post-placement optimization technique especially buffer insertion. This issue becomes critical in nowadays VLSI chip design due to the factor of timing, congestion, and increasingly non-uniform parasitic among different metal layers. Besides, as a step before routing, this layer planning algorithm accounts for routability by considering minimized overlap area between different nets. Moreover, layer directive information which is a crucial concern in industrial design is also considered in the algorithm.

The core problem is formulated as nonlinear programming problem which is composed of objective function and constraints. The problem is further solved by conjugate gradient method. The whole algorithm is implemented by C++ under Linux operating system and tested on ISPD2008 Global Routing Contest Benchmarks. The experiment results are shown in the end of this thesis and confirm the effectiveness of our approach especially in routability aspect.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-08-11584
Date2012 August 1900
CreatorsChang, Chi-Yu
ContributorsHu, Jiang
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0023 seconds