Return to search

Game theory for dynamic spectrum sharing cognitive radio

‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various issues linked to wireless communications. This work presents a Green Game-Based Hybrid Vertical Handover Model. The model is used for heterogeneous wireless networks, which combines both dynamic (Received Signal Strength and Node Mobility) and static (Cost, Power Consumption and Bandwidth) factors. These factors control the handover decision process; whereby the mechanism successfully eliminates any unnecessary handovers, reduces delay and overall number of handovers to 50% less and 70% less dropped packets and saves 50% more energy in comparison to other mechanisms. A novel Game-Based Multi-Interface Fast-Handover MIPv6 protocol is introduced in this thesis as an extension to the Multi-Interface Fast-handover MIPv6 protocol. The protocol works when the mobile node has more than one wireless interface. The protocol controls the handover decision process by deciding whether a handover is necessary and helps the node to choose the right access point at the right time. In addition, the protocol switches the mobile nodes interfaces ‘ON’ and ‘OFF’ when needed to control the mobile node’s energy consumption and eliminate power lost of adding another interface. The protocol successfully reduces the number of handovers to 70%, 90% less dropped packets, 40% more received packets and acknowledgments and 85% less end-to-end delay in comparison to other Protocols. Furthermore, the thesis adapts a novel combination of both game and auction theory in dynamic resource allocation and price-power-based routing in wireless Ad-Hoc networks. Under auction schemes, destinations nodes bid the information data to access to the data stored in the server node. The server will allocate the data to the winner who values it most. Once the data has been allocated to the winner, another mechanism for dynamic routing is adopted. The routing mechanism is based on the source-destination cooperation, power consumption and source-compensation to the intermediate nodes. The mechanism dramatically increases the seller’s revenue to 50% more when compared to random allocation scheme and briefly evaluates the reliability of predefined route with respect to data prices, source and destination cooperation for different network settings. Last but not least, this thesis adjusts an adaptive competitive second-price pay-to-bid sealed auction game and a reputation-based game. This solves the fairness problems associated with spectrum sharing amongst one primary user and a large number of secondary users in a cognitive radio environment. The proposed games create a competition between the bidders and offers better revenue to the players in terms of fairness to more than 60% in certain scenarios. The proposed game could reach the maximum total profit for both primary and secondary users with better fairness; this is illustrated through numerical results.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:517918
Date January 2010
CreatorsRaoof, Omar
ContributorsAl-Raweshidy, H.
PublisherBrunel University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://bura.brunel.ac.uk/handle/2438/7371

Page generated in 0.0021 seconds