Wireless ad hoc networks are expected to play an important role in civilian and military settings where wireless access to wired backbone is either ineffective or impossible. Wireless sensor networks are effective in remote data acquisition. Congestion control and power consumption in wireless ad hoc networks have received a lot of attention in recent research. Several algorithms have been proposed to reduce congestion and power consumption in wireless ad hoc and sensor networks. In this thesis, we focus upon two schemes, which deal with congestion control and power consumption issues. This thesis consists of two parts. In the first part, we describe a randomization scheme for congestion control in dynamic source routing protocol, which we refer to as RDSR. We also study a randomization scheme for GDSR protocol, a GPS optimized variant of DSR. We discuss RDSR and RGDSR implementations and present extensive simulation experiments to study their performance. Our results indicate that both RGDSR and RDSR protocols outperform their non-randomized counterparts by decreasing the number of route query packets. Furthermore, a probabilistic congestion control scheme based on local tuning of routing protocol parameters is shown to be feasible. In the second part we present a simulation based performance study of energy aware data centric routing protocol, EAD, proposed by X. Cheng and A. Boukerche. EAD reduces power consumption by requiring only a small percentage of the network to stay awake. Our experiments show that EAD outperforms the well-known LEACH scheme.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc4261 |
Date | 08 1900 |
Creators | Joseph, Linus |
Contributors | Boukerche, Azzedine, Jacob, Roy T., Mikler, Armin R., Tarau, Paul, Mihalcea, Rada, 1974- |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Use restricted to UNT Community, Copyright, Joseph, Linus, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0017 seconds