Return to search

Cooperative routing in wireless networks.

Lam, Kim Yung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 87-92). / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Rayleigh Fading Channels --- p.1 / Chapter 1.2 --- Wireless Ad Hoc Networks --- p.3 / Chapter 1.3 --- Ad Hoc Routing Protocols --- p.3 / Chapter 1.4 --- Information Capacity --- p.4 / Chapter 1.5 --- Cooperative Communications --- p.6 / Chapter 1.6 --- Outline of Thesis --- p.7 / Chapter 2 --- Background and Related Work --- p.8 / Chapter 2.1 --- Cooperative Communications --- p.8 / Chapter 2.1.1 --- Cooperative Diversity --- p.8 / Chapter 2.1.2 --- User Cooperation --- p.10 / Chapter 2.1.3 --- Coded Cooperation --- p.11 / Chapter 2.2 --- Cooperative Routing --- p.12 / Chapter 2.3 --- Information-Theoretic Study --- p.16 / Chapter 2.4 --- Optimization techniques --- p.17 / Chapter 3 --- Single-Source Single-Destination Cooperative Routing --- p.21 / Chapter 3.1 --- System Model --- p.22 / Chapter 3.1.1 --- Network Assumptions --- p.22 / Chapter 3.1.2 --- Routing Process --- p.22 / Chapter 3.1.3 --- Transmitting Signal --- p.23 / Chapter 3.1.4 --- Link Cost Formulation --- p.23 / Chapter 3.2 --- Minimum Energy Cooperative Route --- p.25 / Chapter 3.2.1 --- Cooperative Graph --- p.25 / Chapter 3.2.2 --- An Example of the Cooperative Graph --- p.27 / Chapter 3.2.3 --- Non-reducible property of the Cooperative Graph --- p.29 / Chapter 3.3 --- Optimized Scheduling --- p.32 / Chapter 3.3.1 --- KKT conditions --- p.32 / Chapter 3.3.2 --- Newton´ةs Method --- p.34 / Chapter 3.4 --- Complexity Analysis --- p.35 / Chapter 3.5 --- Simplified Scheduling Process --- p.37 / Chapter 3.5.1 --- Linear relationship in low rate regime --- p.37 / Chapter 3.5.2 --- The Simplified Scheduling Algorithm --- p.39 / Chapter 4 --- Heuristic Single-Source Cooperative Routing Schemes --- p.41 / Chapter 4.1 --- Maximum Hops Cut --- p.42 / Chapter 4.1.1 --- The Routing Protocol --- p.42 / Chapter 4.1.2 --- Simulations --- p.46 / Chapter 4.2 --- Maximum Relays Subgraph --- p.47 / Chapter 4.2.1 --- The Routing Protocol --- p.47 / Chapter 4.2.2 --- Simulations --- p.51 / Chapter 4.3 --- Adaptive Maximum Relays Subgraph --- p.55 / Chapter 4.3.1 --- The Routing Protocol --- p.55 / Chapter 4.3.2 --- Simulations --- p.57 / Chapter 4.4 --- Comparison of three protocols --- p.60 / Chapter 4.4.1 --- Implementation --- p.60 / Chapter 4.4.2 --- Cooperative Performance --- p.60 / Chapter 4.5 --- Enhancement of the algorithms --- p.61 / Chapter 4.5.1 --- Conclusion --- p.63 / Chapter 5 --- Multiplexing Cooperative Routes in Multi-source Networks --- p.64 / Chapter 5.1 --- Problem Formation --- p.65 / Chapter 5.1.1 --- The Network Model --- p.65 / Chapter 5.1.2 --- Objective Aim --- p.65 / Chapter 5.1.3 --- Link Cost Formulation --- p.66 / Chapter 5.1.4 --- Time Sharing and Interference --- p.66 / Chapter 5.1.5 --- Multiple Sources Consideration --- p.67 / Chapter 5.2 --- Multi-Source Route-Multiplexing Protocols --- p.68 / Chapter 5.2.1 --- Full Combination with Interference (FCI) --- p.68 / Chapter 5.2.2 --- Full Combination with Time Sharing (FCTS) --- p.68 / Chapter 5.2.3 --- Selection Between Interference and Time Sharing (SBITS) --- p.69 / Chapter 5.2.4 --- Interference and time sharing combinations --- p.71 / Chapter 5.2.5 --- The Simplified Version for SBITS --- p.72 / Chapter 5.3 --- Stage Cost Calculation --- p.73 / Chapter 5.3.1 --- Total stage cost formation in the sub timeslot --- p.73 / Chapter 5.3.2 --- Total stage cost formulation in different routing protocols --- p.74 / Chapter 5.3.3 --- Multiplexing for non-uniform timeslot routes --- p.75 / Chapter 5.4 --- Simulation --- p.76 / Chapter 5.4.1 --- Simulation model --- p.76 / Chapter 5.4.2 --- Simulation detail --- p.77 / Chapter 5.4.3 --- Simulation evaluation --- p.78 / Chapter 6 --- Conclusion and Future Work --- p.83 / Chapter 6.1 --- Conclusion --- p.83 / Chapter 6.2 --- Future Work --- p.84 / Chapter 6.2.1 --- Multiple-Source System Optimal Route --- p.84 / Chapter 6.2.2 --- Better Relay-Selection Policy --- p.85 / Chapter 6.2.3 --- Single Optimization for Minimum Energy Cooperative Route --- p.85 / Chapter 6.2.4 --- Dynamic Programming for Minimum Energy Cooperative Route --- p.85 / Chapter 6.2.5 --- Min-Max Problem --- p.85 / Chapter 6.2.6 --- Distributed Algorithm --- p.86 / Chapter 6.2.7 --- Game Theory --- p.86 / Bibliography --- p.87

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_326907
Date January 2009
ContributorsLam, Kim Yung., Chinese University of Hong Kong Graduate School. Division of Information Engineering.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, xi, 92 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0022 seconds