Thesis advisor: Amir H. Hoveyda / Chapter 1. Mechanistic Insights and Factors Influencing Polytopal Rearrangements in Stereogenic-at-Ru Carbenes. Herein, the mechanistic elucidation of the stereochemical inversion in stereogenic-at-Ru carbene complexes through olefin metathesis (OM) and non-olefin metathesis (non-OM) based polytopal rearrangements is provided. Our investigations involve the isolation and characterization of previously hypothesized higher-energy (e.g., endo-anti) and lower-energy (e.g., exo-anti) diastereomers, and their interconversion under thermal and/or acid-catalyzed conditions is demonstrated. Furthermore, our computational efforts highlighting the importance of the anionic ligands, due to their critical role in trans influence, dipolar interactions, and e-e repulsions, in polytopal rearrangements are reported. Finally, the positive influence of H-bonding in OM and non-OM processes is also rationalized. (a) Khan, R. K. M.; Zhugralin, A. R.; Torker, S.; O'Brien, R. V.; Lombardi, P. J. and Hoveyda, A. H. "Synthesis, Isolation, Characterization, and Reactivity of High-Energy Stereogenic-at-Ru Carbenes: Stereochemical Inversion Through Olefin Metathesis and Other Pathways," J. Am. Chem. Soc. 2012, 134, 12438-12441. (b) Torker, S.; Khan, R. K. M. and Hoveyda, A. H. "The Influence of Anionic Ligands on Stereoisomerism of Ru Carbenes and Their Importance to Efficiency and Selectivity of Catalytic Olefin Metathesis Reactions," J. Am. Chem. Soc. 2014, 136, 3439-3455.
Chapter 2. Highly Z- and Enantioselective Ring-Opening/Cross-Metathesis of Enol Ethers Through Curtin-Hammett Kinetics. The first instances of Z- and enantioselective Ru-catalyzed olefin metathesis are presented. Ring-opening/cross-metathesis (ROCM) reactions of oxabicyclic alkenes and enol ethers and a phenyl vinyl sulfide are promoted by 0.5-5.0 mol % of enantiomerically pure stereogenic-at-Ru complexes with an aryloxy chelate tethered to the N-heterocyclic carbene. Products are formed efficiently and with exceptional enantioselectivity (up to >98:2 enantiomer ratio). Surprisingly, the enantioselective ROCM reactions proceed with high Z selectivity (up to >98% Z). Moreover, reactions proceed with the opposite sense of enantioselectivity versus aryl olefins, which afford E- isomers exclusively. DFT calculations and deuterium-scrambling experiments, indicating fast interconversion between endo- and exo-Fischer carbene diastereomers, support a Curtin-Hammett situation. On this basis, models accounting for the stereoselectivity levels and trends are provided. Furthermore, the correlation of Fischer carbene character to the observed chemoselectivity in ROCM with enol ethers is also disclosed. Finally, a general proposal for the substrate-controlled Z selectivity in OM is also discussed. (a) Khan, R. K. M.; O'Brien, R. V.; Torker, S.; Li, B. and Hoveyda, A. H. "Z- and Enantioselective Ring-Opening Cross-Metathesis with Enol Ethers Catalyzed by Stereogenic-at-Ru Carbenes: Reactivity, Selectivity, and Curtin-Hammett Kinetics," J. Am. Chem. Soc. 2012, 134, 12774-12779. (b) Torker, S.; Koh, M. J.; Khan, R. K. M. and Hoveyda, A. H. "Origin of Z selectivity in Olefin Metathesis Reactions of Certain Terminal Alkenes Catalyzed by Typically E-Selective Ru Carbenes," manuscript submitted.
Chapter 3. A New Class of Highly Efficient Ru Catalysts for Z-Selective Olefin Metathesis. Herein, we outline a general design for Z-selective OM, which led to the development of a new class of stereogenic-at-Ru carbene complexes (Ru4-9). Furthermore, we demonstrate that the newly developed dithiolate complexes Ru4b and Ru5 efficiently promote high activity and selectivity in ROMP reactions of norbornene and cyclooctene. Notably, the catechothiolate Ru4b catalyzes Z-selective ROCM with a broad scope of alkenes involving various functional groups (e.g., alcohols, enol ethers, vinyl sulfides, amides, heterocycles, and conjugated 1,3-dienes). More importantly, we disclose that the catecholate complex Ru4a is kinetically non-selective in OM and readily decomposes in the presence of mildly acidic moieties (e.g., alcohols and CDCl3). Subsequently, Ru9 is developed to efficiently promote highly Z-selective CM of a diol cross-partner with a wide range of alkene substrates. Most remarkably, the aforementioned protocol is employed in two natural product syntheses and the OM-based Z-selective cracking of oleic acid, which is unprecedented with existing Ru-carbenes and Mo/W-alkylidenes. (a) Khan, R. K. M.; Torker, S. and Hoveyda, A. H. "Readily Accessible and Easily Modifiable Ru-Based Catalysts for Efficient and Z-Selective Ring-Opening Metathesis Polymerization and Ring-Opening Cross-Metathesis," J. Am. Chem. Soc. 2013, 135, 10258-10261. (b) Koh, M. J.; Khan, R. K. M.; Torker, S. and Hoveyda, A. H. "Broadly Applicable Z- and Diastereoselective Ring-Opening/Cross-Metathesis Catalyzed By a Dithiolate Ru Complex," Angew. Chem., Int. Ed. 2014, 53, 1968-1972. (c) Khan, R. K. M. ; Torker, S. and Hoveyda, A. H. "Reactivity and Selectivity Differences Between Catecholate and Catechothiolate Ru Complexes. Implications Regarding Design of Stereoselective Olefin Metathesis Catalysts," J. Am. Chem. Soc. 2014, 136, 14337-14340. (d) Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S. and Hoveyda, A. H. "Synthesis of High-Value Alcohols, Aldehydes and Acids by Catalytic Z-Selective Cross-Metathesis" manuscript submitted. / Thesis (PhD) — Boston College, 2014. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
Identifer | oai:union.ndltd.org:BOSTON/oai:dlib.bc.edu:bc-ir_104359 |
Date | January 2014 |
Creators | Khan, Rana Kashif |
Publisher | Boston College |
Source Sets | Boston College |
Language | English |
Detected Language | English |
Type | Text, thesis |
Format | electronic, application/pdf |
Rights | Copyright is held by the author, with all rights reserved, unless otherwise noted. |
Page generated in 0.0019 seconds