Return to search

Synthesis and Electrochemical Evaluation of Perovskite related oxide for Active Cathode for Solid Oxide Fuel Cells (SOFCs)

Solid oxide fuel cells are used as stationary power plants for electricity production. Despite having a very high efficiency of 90% they haven’t gained a world-wide commercial usage, due to their very high operating temperatures, and high production cost. However, there is a lot of ongoing research with the aim of developing intermediate-temperature solid oxide fuel cells (IT-SOFCs) that could operate at temperatures below 800°C. Cathodes are the most studied components of IT-SOFCs, since decreasing operating temperature results in slow oxygen reduction reaction(ORR) kinetics and large polarization losses. Perovskite related metal oxides have become very popular materials that could make suitable cathodes for IT-SOFCs. In this work an evaluation of several materials belonging to three different material groups have been studied: single layer perovskites, with a general formula of ABO3, double layer perovskites, with a general formula of AA’B2O6 and Ruddlesden-Popper phase, with a general formula of An+1BnO3n+1. Power generating capabilities of those materials have been studied on an electrolyte supported cell, cathode/LSGM9182/Ni-Fe. IR drop and overpotential of the cathode was measured and activation energy of the ORR for each material has been calculated. The double layer perovskite cobaltites offer a significant drop in overpotential, increase in conductivity compared to their single layer counterpart, while being able to generate significant amount of power. Ruddlesden-Popper phase materials offer the lowest activation energy values amongst the researched materials, but offer limited power generation values in the setup they were tested. Both of double layer perovskites and Ruddlesden-Popper based materials have opportunities for their performance to be improved. / Fastoxidbränsleceller används som stationära kraftverk för elproduktion. Trots att de har en mycket hög effektivitet på 90% har de inte fått en världsomspännande kommersiell användning på grund av deras mycket höga driftstemperaturer och hög produktionskostnad. Det är emellertid mycket pågående forskning med sikte på att utveckla intermediär temperatur fastoxidbränsleceller (IT-SOFC) som kan fungera vid temperaturer under 800 ° C. Katod är de mest studerade komponenterna i IT-SOFC, eftersom minskad driftstemperatur resulterar i kinetik med långsam syrereduktion (ORR) och stora polarisationsförluster. Perovskite-relaterade metalloxider har blivit mycket populära material som kan göra lämpliga katoder för IT-SOFC. I detta arbete har en utvärdering av flera material som hör till tre olika materialgrupper studerats: singelskikt perovskiter, med en generell formel för ABO3, dubbelskikt perovskiter, med en generell formel av AA'B2O6 och Ruddlesden-Popper-fasen med en allmän formel för An + 1BnO3n + 1. Effektgenereringskapaciteten hos dessa material har studerats på en elektrolytbärbar cell, katod / LSGM9182 / Ni-Fe. IR-droppe och överpotential hos katoden mättes och aktiveringsenergin för ORR för varje material har beräknats. Dubbelskiktet perovskit koboltiter ger en signifikant minskning av överpotentialen, ökad ledningsförmåga jämfört med deras enkelskikt motpart, samtidigt som man kan generera betydande mängden kraft. Ruddlesden-Popper-fasmaterial erbjuder de lägsta aktiveringsenergivärdena bland de undersökta materialen, men erbjuder begränsade kraftproduktionsvärden i den inställning de testades. Både av dubbelskiktet perovskiter och Ruddlesden-Popper-baserade material har möjligheter att förbättra deras prestanda.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-223612
Date January 2017
CreatorsKluczny, Maksymilian
PublisherKTH, Kemiteknik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf, application/pdf
Rightsinfo:eu-repo/semantics/openAccess, info:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds